【高频真题解析】2022年石家庄栾城区中考数学备考模拟练习 (B)卷(含答案详解)
展开2022年石家庄栾城区中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ).
A.19℃ B.-19 ℃ C.15℃ D.-15℃
2、的相反数是( )
A. B. C. D.
3、计算-1-1-1的结果是( )
A.-3 B.3 C.1 D.-1
4、下列变形中,正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
5、若a<0,则=( ) .
A.a B.-a C.- D.0
6、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A. B. C. D.
7、下列说法正确的是( )
A.的倒数是 B.的绝对值是
C.的相反数是 D.x取任意有理数时,都大于0
8、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
9、若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<20,则这样的三角形有( )
A.2个 B.3个 C.4个 D.5个
10、下列各式:中,分式有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、双曲线,当时,随的增大而减小,则________.
2、已知圆锥的底面周长为,母线长为.则它的侧面展开图的圆心角为________度.
3、已知,则a=_____, b=________.
4、已知一种商品,连续两次降价后,其售价是原来的四分之一.若每次降价的百分率都是,则满足的方程是________.
5、下列4个分式:①;②;③ ;④,中最简分式有_____个.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.
(1)求A、B两点的坐标;
(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.
2、山清水秀的东至县三条岭已成为游客最喜欢的旅游地之一,其中“蔡岭”在2019年“五一”小长假期间,接待游客达2万人次,预计在2021年“五一”小长假期间,接待游客2.88万人次,在蔡岭,一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.
(1)求出2019至2021年“五一”小长假期间游客人次的年平均增长率;
(2)为了更好地维护东至县形象,物价局规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天净利润最大,最大利润是多少?(净利润=总收入-总成本-其它各种费用)
3、解方程:
(1)
(2)
4、已知抛物线y=﹣x2+x.
(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.
①若n<﹣5,判断y1与y2的大小关系并说明理由;
②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.
5、某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为(元/件)(的整数),每天销售利润为(元).
(1)直接写出与的函数关系式为:_________;
(2)若要使每天销售利润为270元,求此时的销售单价;
(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润的取值范围.
-参考答案-
一、单选题
1、A
【分析】
用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】
解:17-(-2)
=17+2
=19℃.
故选A.
【点睛】
本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.
2、A
【分析】
直接利用特殊角的三角函数值得出cos45°的值,再利用互为相反数的定义得出答案.
【详解】
cos45°= 的相反数是﹣.
故选A.
【点睛】
本题主要考查了特殊角的三角函数值以及相反数,正确记忆特殊角的三角函数值是解题的关键.
3、A
【分析】
根据有理数的减法法则计算.
【详解】
解:-1-1-1=-1+(-1)+(-1)=-3.
故选:A.
【点睛】
本题考查有理数的减法.有理数减法法则:减去一个数等于加上这个数的相反数.
4、B
【分析】
根据等式的性质,对选项逐个判断即可.
【详解】
解:选项A,若,当时,不一定成立,故错误,不符合题意;
选项B,若,两边同时除以,可得,正确,符合题意;
选项C,将分母中的小数化为整数,得,故错误,不符合题意;
选项D,方程变形为,故错误,不符合题意;
故选B.
【点睛】
此题考查了等式的性质,熟练掌握等式的有关性质是解题的关键.
5、B
【分析】
根据负数的绝对值等于它的相反数,即可解答.
【详解】
解:∵a<0,
∴|a|=-a.
故选:B .
【点睛】
本题考查绝对值,解题的关键是熟记负数的绝对值等于它的相反数.
6、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
7、C
【分析】
结合有理数的相关概念即可求解
【详解】
解:A:的倒数是,不符合题意;
B:的绝对值是2;不符合题意;
C:,5的相反数是,符合题意;
D:x取0时,;不符合题意
故答案是:C
【点睛】
本题主要考察有理数的相关概念,即倒数、绝对值及其性质、多重符号化简、相反数等,属于基础的概念理解题,难度不大.解题的关键是掌握相关的概念.
8、C
【分析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,也是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、B
【解析】
【分析】
首先根据连续自然数的关系可设中间的数为x,则前面一个为x﹣1,后面一个为x+1,根据题意可得10<x﹣1+x+x+1<20,再解不等式即可.
【详解】
设中间的数为x,则前面一个为x﹣1,后面一个为x+1,由题意得:
10<x﹣1+x+x+1<20
解得:3x<6.
∵x为自然数,∴x=4,5,6.
故选B.
【点睛】
本题考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.
10、B
【分析】
根据分式的定义判断即可.
【详解】
解:,是分式,共2个,
故选B.
【点睛】
本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型.
二、填空题
1、
【分析】
根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.
【详解】
根据题意得:,解得:m=﹣2.
故答案为﹣2.
【点睛】
本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.
2、
【分析】
根据弧长=圆锥底面周长=4π,弧长=计算.
【详解】
由题意知:弧长=圆锥底面周长=4πcm,=4π,解得:n=240.
故答案为240.
【点睛】
本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.
3、2 2
【分析】
先根据异分母分式的加法法则计算,再令等号两边的分子相等即可.
【详解】
解:∵,
∴,
∴a(x−2)+b(x+2)=4x,即(a+b)x−2(a−b)=4x,
∴a+b=4,a-b=0,
∴a=b=2,
故答案为:2,2.
【点睛】
本题考查的是分式的加减法,在解答此类问题时要注意通分的应用.
4、
【分析】
可设原价为1,关系式为:原价×(1﹣降低的百分率)2=现售价,把相关数值代入即可.
【详解】
设原价为1,则现售价为,∴可得方程为:1×(1﹣x)2=.
故答案为1×(1﹣x)2=.
【点睛】
考查列一元二次方程;掌握连续两次变化的关系式是解决本题的关键.
5、①④
【分析】
根据最简分式的定义逐式分析即可.
【详解】
①是最简分式;②=,不是最简分式 ;③=,不是最简分式;④是最简分式.
故答案为2.
【点睛】
本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.
三、解答题
1、
(1)A(1,0),B(5,0)
(2)(6,5)
【分析】
(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;
(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.
(1)
解:∵二次函数的图象与y轴交于
∴,解得a=1
∴二次函数的解析式为
∵二次函数的图象与x轴交于A、B两点
∴令y=0,即,解得x=1或x=5
∵点A在点B的左侧
∴A(1,0),B(5,0).
(2)
解:由(1)得函数解析式为
∴抛物线的顶点为(3,-4)
∵点D和点C到x轴的距离相等,即为5
∴点D在x轴的上方,设D的坐标为(d,5)
∴,解得d=6或d=0
∴点D的坐标为(6,5).
【点睛】
本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.
2、
(1)
(2)当每碗售价定为20元时,店家才能实现每天净利润最大,最大利润是632元
【分析】
(1)可设年平均增长率为,根据等量关系:2019年五一长假期间,接待游客达209万人次,在2020年五一长假期间,接待游客将达2.88万人次,列出方程求解即可;
(2)可设每碗售价定为元时,根据利润的等量关系列出方程利用配方法求解即可.
(1)
解:可设年平均增长率为,依题意有
,
解得,(舍去).
答:年平均增长率为;
(2)
解:设每天净利润,每碗售价定为元时,依题意得:
,
,
当时,店家才能实现每天净利润最大,最大利润是632元,
答:当每碗售价定为20元时,店家才能实现每天净利润最大,最大利润是632元.
【点睛】
考查了一元二次方程的应用,二次函数的最值问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
3、
(1)2
(2)
【分析】
(1)先去括号,再移项,合并同类项,最后把未知数的系数化“1”即可;
(2)先去分母,再去括号,移项,合并同类项,最后把未知数的系数化“1”即可.
(1)
解:
去括号得:
移项,合并同类项得:
解得:
(2)
解:
去分母得:
去括号得:
移项合并同类项得:
解得:
【点睛】
本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.
4、
(1)直线x=1,(0,0)
(2)①y1<y2,理由见解析;②﹣1<n<﹣
【分析】
(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;
(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;
(3)分两种情况讨论,列出不等式组可求解.
(1)
∵y=﹣x2+x,
∴对称轴为直线x=﹣=1,
令x=0,则y=0,
∴抛物线与y轴的交点坐标为(0,0);
(2)
xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).
①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.
∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,
∵抛物线y=﹣x2+x开口向下,
∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.
∴y1<y2;
②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得,
∴不等式组无解,
若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,
由题意可得:,
∴﹣1<n<﹣,
综上所述:﹣1<n<﹣.
【点睛】
本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.
5、
(1)
(2)销售单价为或元
(3)
【分析】
(1)销售单价为元/件时,每件的利润为元,此时销量为,由此计算每天的利润即可;
(2)根据题意结合(1)的结论,建立一元二次方程求解即可;
(3)首先求出利润不超过时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可.
(1)
由题意得,
∴与的函数关系式为:;
(2)
由题意得:,
解得,
∵,
∴销售单价为或元;
(3)
∵每件小商品利润不超过,
∴,得,
∴小商品的销售单价为,
由(1)得,
∵对称轴为直线,
∴在对称轴的左侧,且随着的增大而增大,
∴当时,取得最大值,此时,
当时,取得最小值,此时
即该小商品每天销售利润的取值范围为.
【点睛】
本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.
【真题汇编】2022年河北石家庄市晋州市中考数学备考模拟练习 (B)卷(含详解): 这是一份【真题汇编】2022年河北石家庄市晋州市中考数学备考模拟练习 (B)卷(含详解),共21页。试卷主要包含了把 写成省略括号后的算式为,方程的解为,下列等式成立的是,是-2的 .等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学备考模拟练习 (B)卷(含答案及详解): 这是一份【高频真题解析】2022年最新中考数学备考模拟练习 (B)卷(含答案及详解),共23页。试卷主要包含了如果,那么的取值范围是,下列各题去括号正确的是.,下列分式中,最简分式是,下列各数中,是无理数的是等内容,欢迎下载使用。
【高频真题解析】2022年石家庄栾城区中考数学模拟专项测试 B卷(含答案详解): 这是一份【高频真题解析】2022年石家庄栾城区中考数学模拟专项测试 B卷(含答案详解),共23页。试卷主要包含了已知等腰三角形的两边长满足+,在,,, ,中,负数的个数有.,下列各数中,是无理数的是,在解方程时,去分母正确的是,下列各题去括号正确的是.等内容,欢迎下载使用。