初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题
展开
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试练习题,共19页。试卷主要包含了如图,几何体的左视图是,如图所示的几何体的左视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )A.6 B.7 C.10 D.12、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A.12 B.11 C.10 D.93、下面的三视图所对应的几何体是( )A. B. C. D.4、如图,几何体的左视图是( )A. B. C. D.5、下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )A. B.C. D.6、如图所示的几何体的左视图是( )A. B. C. D.7、如图是一个几何体的实物图,则其主视图是( )A. B. C. D.8、水平放置的下列几何体,主视图不是矩形的是( )A. B.C. D.9、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )A. B. C. D.10、如图,将一个装了一半水的密闭圆柱形玻璃杯水平放置时,水面的形状是( )A.圆 B.梯形 C.长方形 D.椭圆第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _____.2、一个“粮仓”的三视图如图所示(单位:m),则它的体积是____3、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差______个.4、一个几何体由一些大小相同的小正方体组成,如图写出是它的主视图和左视图,那么组成该几何体所需小正方体的个数最多为____5、如图是一个几何体的三视图,该几何体的体积是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图.2、如图,是由一些大小相同的小正方体组合成的简单几何体,根据要求完成下列题目.(1)图中共有 个小正方体;(2)请在方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影).3、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.4、下面是由一些棱长为a厘米的正方体小木块搭建成的几何体的主视图、左视图和俯视图.(1)该几何体是由 块小木块组成的;(2)求出该几何体的体积;(3)求出该几何体的表面积(包含底面).5、如图所示是一个用小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图. -参考答案-一、单选题1、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.2、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;∴这个几何体最少需要用个小正方体.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.3、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.4、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是: .故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5、C【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:、主视图、俯视图都是正方形,故不符合题意;、主视图、俯视图都是矩形,故不符合题意;、主视图是三角形、俯视图是圆形,故符合题意;、主视图、俯视图都是圆,故不符合题意;故选:C.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握从正面看得到的图形是主视图,从上面看得到的图形是俯视图.6、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.【点睛】本题考查了左视图,熟记定义是解题关键.7、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8、C【分析】根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断【详解】解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形故C选项符合题题意,故选C【点睛】本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.9、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10、C【分析】根据水平面与圆柱的底面垂直,可得从上面看,水面的形状为长方形,即可求解.【详解】解:∵水平面与圆柱的底面垂直,∴从上面看,水面的形状为长方形.故选:C【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从前面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从侧面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.二、填空题1、③④①②【分析】根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.【详解】解:西为③,西北为④,东北为①,东为②,将它们按时间先后顺序排列为③④①②,故答案是:③④①②.【点睛】本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长.2、【分析】根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算体积即可.【详解】解:观察发现该几何体为圆锥和圆柱的结合体,其体积为:,故答案为:【点睛】本题考查了根据三视图计算几何体的体积,由三视图还原几何题是解题的关键.3、5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体.【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5.【点睛】本题考查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4、8【分析】根据三视图还原简单几何体,由主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,即可计算出小正方体的最少块数.【详解】解:由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最多5+3=8块.故答案为8【点睛】本题主要考查了三视图,明确三视图的定义以及由三视图还原几何体的法则是解题关键.5、【分析】由三视图可知。这个立体图形是圆柱,因此根据圆柱的体积公式进行求解即可得到答案.【详解】解:由三视图可知。这个立体图形是圆柱,且底面圆的直径是2,圆柱的高为4∴故答案为:.【点睛】本题主要考查了立体图形的三视图和圆柱的体积计算,解题的关键在于根据三视图确定立体图形的形状.三、解答题1、图见解析【分析】从正面看,得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可.【详解】解:如下图所示,【点睛】此题考查三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.2、(1)9;(2)见解析.【分析】(1)直接根据几何体的形状,数出小正方体的个数即可;(2)直接利用左视图以及俯视图的观察角度分析得出答案即可.【详解】解:(1)由题意得:图中共有9个小正方体.故答案为:9.(2)如图所示,即为所求:【点睛】本题主要考查了画小立方体组成的几何体的三视图,判断小立方体的个数,解题的关键在于正确注意观察角度,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形.3、(1)见解析;(2)见解析【分析】(1)如图,分别以为端点作射线,两射线交于点即可求得的位置,过和木桩的顶端,以为端点做射线,与底面交于点,木桩底部为点,连接,则即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.4、(1)10;(2)10a3 cm3;(3)40a2 cm2.【分析】(1)根据三视图的定义解决问题即可;(2)求出10个小正方体的体积和即可;(3)还原出立体图形,进而求出各个面的面积进行加总求和.【详解】解答:解:(1)几何体的小正方形的个数如俯视图所示,2=1+3+1+1+2=10.故答案为:10.(2)V=10a3(cm3)∴该几何体的体积为10a3cm3.(3)S=2(6a2+6a2+6a2)+2(a2+a2)=40a2(cm2).∴该几何体的表面积40a2cm2.【点睛】本题主要是考查了立体图形的三视图以及体积、表面积的求解,通过三视图还原得到原立体图形,需要一定的空间想象能力,另外表面积的求解,不要漏掉一些面.5、见解析【分析】根据简单组合体的三视图的意义和画法画出相应的图形即可.【详解】这个组合体的三视图如下:【点睛】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确解答的关键.
相关试卷
这是一份初中沪科版第25章 投影与视图综合与测试达标测试,共21页。试卷主要包含了下列物体的左视图是圆的为,图中几何体的左视图是等内容,欢迎下载使用。
这是一份数学沪科版第25章 投影与视图综合与测试一课一练,共22页。试卷主要包含了如图,身高1.5米的小明.,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试随堂练习题,共20页。试卷主要包含了如图所示的几何体的俯视图是,如图所示的几何体左视图是等内容,欢迎下载使用。