【真题汇总卷】2022年辽宁省沈阳市中考数学三年真题模拟 卷(Ⅱ)(精选)
展开
这是一份【真题汇总卷】2022年辽宁省沈阳市中考数学三年真题模拟 卷(Ⅱ)(精选),共24页。试卷主要包含了下列说法中不正确的是,下列式子运算结果为2a的是.等内容,欢迎下载使用。
2022年辽宁省沈阳市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )A. B. C. D. 2、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+33、同学们,我们是2022届学生,这个数字2022的相反数是( )A.2022 B. C. D.4、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )A. B. C. D.5、下列说法中不正确的是( )A.平面内,垂直于同一条直线的两直线平行B.过一点有且只有一条直线与已知直线平行C.平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离6、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A. B. C. D.7、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )A.1 B.﹣1 C.2 D.﹣28、下列式子运算结果为2a的是( ).A. B. C. D.9、等腰三角形的一个内角是,则它的一个底角的度数是( )A. B.C.或 D.或10、已知二次函数,则关于该函数的下列说法正确的是( )A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式﹣5+x≤0非负整数解是____.2、底面圆的半径为3,高为4的圆锥的全面积是______.3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.4、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.5、如图,已知AD为的高,,以AB为底边作等腰,,交AC于F,连ED,EC,有以下结论:①;②;③;④;其中正确的是___.三、解答题(5小题,每小题10分,共计50分)1、已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.2、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).(1)求二次函数的表达式;(2)连接AC,BC,判定△ABC的形状,并说明理由.3、先化简,再求值:,其中,.4、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.5、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交于点.(1)求抛物线的表达式;(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度. -参考答案-一、单选题1、A【分析】参考算式一可得算式二表示的是,由此即可得.【详解】解:由题意可知,图中算式二表示的是,所以算式二为 所以算式二被盖住的部分是选项A,故选:A.【点睛】本题考查了有理数的加法,理解筹算的运算法则是解题关键.2、B【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B.【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.3、C【分析】根据相反数的定义即可得出答案.【详解】解:2022的相反数是-2022.故选:C.【点睛】本题考查了相反数,解题的关键是掌握只有符号不同的两个数互为相反数.4、A【分析】由平面图形的折叠及图形的对称性展开图解题.【详解】由第一次对折后中间有一个矩形,排除B、C;由第二次折叠矩形正在折痕上,排除D;故选:A.【点睛】本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.5、B【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.6、C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:列表如下: 郑外加油郑 外,郑加,郑油,郑外郑,外 加,外油,外加郑,加外,加 油,加油郑,油外,油加,油 由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,所以抽到的汉字恰好是“郑”和“外”的概率为.故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案.【详解】解:黄金矩形的宽与长的比等于黄金数,,.故选:C.【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.8、C【分析】由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.【详解】解:故A不符合题意;不能合并,故B不符合题意;故C符合题意;故D不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.9、A【分析】由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.【详解】解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角∴底角的度数为故选A.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.10、C【分析】把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是,∴A选项错误;∵二次函数的图象开口向上,对称轴是直线,∴当时,的值随值的增大而增大,∴B选项错误;∵当取和时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.二、填空题1、0,1,2,3,4,5【分析】先根据不等式的基本性质求出x的取值范围,再根据x的取值范围求出符合条件的x的非负整数解即可.【详解】解:移项得:x≤5,故原不等式的非负整数解为:0,1,2,3,4,5.故答案为:0,1,2,3,4,5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.2、【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可.【详解】∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:,圆锥的侧面积为:,∴圆锥的全面积为:故答案为:.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.3、3 4 (3,﹣4) 【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.4、105°或75°【分析】分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.【详解】解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,∵∠B=45°,∠BEF=90°,∴∠CFO=∠BFE=45°,∵∠DCO=60°,∴∠COF=15°∴∠AOC=90°+15°=105°;②如图2,AB⊥CD于G,OA交DC于H,∵∠A=45°,∠AGH=90°,∴∠CHO=∠AHG=45°,∵∠DCO=60°,∴∠AOC=180°-60°-45°=75°;故答案为:105°或75°.【点睛】此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.5、①③【分析】只要证明,,是的中位线即可一一判断;【详解】解:如图延长交于,交于.设交于.,,,,,,故①正确,,,,,,不垂直,故②错误,,,,,,,是等腰直角三角形,平分,,,,,,故③正确,,,,,,故④正确.故答案是:①③.【点睛】本题考查等腰直角三角形的性质和判定、全等三角形的判定和性质、三角形中位线定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.三、解答题1、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012y=x2﹣130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.2、(1);(2)直角三角形,理由见解析.【分析】(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.(1)解:将点C代入函数解析式得:,解得:,故该二次函数表达式为:.(2)解:令,得:,解得:,.∴A点坐标为(-1,0),B点坐标为(3,0).∴OA=1,OC=,,∴,. ∵,即,∴的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.3、ab,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.【详解】解:;当,时,原式=【点睛】本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.4、.【分析】只要证明CD⊥AB即可解决问题.【详解】解:如图②中,∵点D是△ABC的“理想点”,∴∠ACD=∠B,∵,∴,∴, ,在Rt△ABC中,,∴BC= ,∵,.【点睛】本解考查了直角三角形判定和性质,理解新定义是解本题的关键.5、(1)(2)(3)【分析】(1)将点和点代入,即可求解;(2)分别求出和直线的解析式为,可得,,再求直线的解析式为,联立,即可求点;(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,,直线与轴交点,则,再由,可得,则有方程,求出,即可求.(1)解:将点和点代入,,,;(2)解:,对称轴为直线,令,则,解得或,,设直线的解析式为,,,,,,设直线的解析式为,,,,联立,或(舍,;(3)解:设,则,,设直线的解析式为,,,,联立,,,,直线与轴交点,,,,轴,,,,,,,,.【点睛】本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.
相关试卷
这是一份【历年真题】2022年辽宁省沈阳市中考数学三年高频真题汇总 卷(Ⅲ)(含详解),共26页。试卷主要包含了如图所示,,,,,则等于,的值.等内容,欢迎下载使用。
这是一份【历年真题】2022年辽宁省营口市中考数学三年高频真题汇总卷(精选),共24页。试卷主要包含了已知4个数等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年中考数学三年真题模拟 卷(Ⅱ)(精选),共22页。试卷主要包含了在中,,,那么的值等于,下列各题去括号正确的是.,方程的解为,把 写成省略括号后的算式为等内容,欢迎下载使用。