【真题汇编】2022年重庆市巴南区中考数学模拟专项测评 A卷(含答案详解)
展开2022年重庆市巴南区中考数学模拟专项测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列关于整式的说法错误的是( )
A.单项式的系数是-1 B.单项式的次数是3
C.多项式是二次三项式 D.单项式与ba是同类项
2、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
3、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
4、如果与的差是单项式,那么、的值是( )
A., B., C., D.,
5、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
6、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )
A.0 B.3 C.12 D.16
7、若二次函数的图象经过点,则a的值为( )
A.-2 B.2 C.-1 D.1
8、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
9、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )
A.17 B.20 C.22 D.25
10、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、经过定点A、B的圆心轨迹是_____.
2、如图,已知D是等边边AB上的一点,现将折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果,则的值为______.
3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
4、若a和b互为相反数,c和d互为倒数,则的值是________________.
5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
2、在整式的加减练习中,已知,小王同学错将“”看成“”算得错误结果为,请你解决以下问题:
(1)求出整式;
(2)求出正确计算结果.
3、一次数学测试,小明做试卷用小时,检查试卷用去小时,这时离测试结束还有小时,这次测试规定时间是多少小时?
4、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
5、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:
售价x(元/件) | 40 | 45 |
月销售量y(件) | 300 | 250 |
月销售利润w(元) | 3000 | 3750 |
注:月销售利润=月销售量×(售价-进价)
(1)求y关于x的函数表达式;
(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.
-参考答案-
一、单选题
1、C
【分析】
根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.
【详解】
解:A、单项式的系数是-1,说法正确,不符合题意;
B、单项式的次数是3,说法正确,不符合题意;
C、多项式是三次二项式,说法错误,符合题意;
D、单项式与ba是同类项,说法正确,不符合题意;
故选C.
【点睛】
本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.
2、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
3、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
4、C
【分析】
根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.
【详解】
∵与的差是单项式,
∴与是同类项,
∴n+2=3,2m-1=3,
∴m=2, n=1,
故选C.
【点睛】
本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.
5、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
6、C
【分析】
先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.
【详解】
解:(mx+8)(2﹣3x)
(mx+8)(2﹣3x)中不含x的一次项,
解得:
故选C
【点睛】
本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.
7、C
【分析】
把(-2,-4)代入函数y=ax2中,即可求a.
【详解】
解:把(-2,-4)代入函数y=ax2,得
4a=-4,
解得a=-1.
故选:C.
【点睛】
本题考查了点与函数的关系,解题的关键是代入求值.
8、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
9、B
【分析】
根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.
【详解】
解:由不等式组可知:x≤5且x≥,
∵有解且至多有3个整数解,
∴2<≤5,
∴2<m≤8,
由分式方程可知:y=m-3,
将y=m-3代入y-2≠0,
∴m≠5,
∵-3≤y≤4,
∴-3≤m-3≤4,
∵m是整数,
∴0≤m≤7,
综上,2<m≤7,
∴所有满足条件的整数m有:3、4、6、7,共4个,
和为:3+4+6+7=20.
故选:B.
【点睛】
本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.
10、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
二、填空题
1、线段的垂直平分线
【分析】
根据到两点的距离相等的点在线段的垂直平分线上可得结论
【详解】
解:根据到两点的距离相等的点在线段的垂直平分线上可知,
经过定点A、B的圆心轨迹是线段的垂直平分线
故答案为:线段的垂直平分线
【点睛】
本题考查了垂直平分线的性质判定,理解题意是解题的关键.
2、7:8
【分析】
设AD=2x,DB=3x,连接DE、DF,由折叠的性质及等边三角形的性质可得△ADE∽△BFD,由相似三角形的性质即可求得CE:CF的值.
【详解】
设AD=2x,DB=3x,则AB=5x
连接DE、DF,如图所示
∵△ABC是等边三角形
∴BC=AC=AB=5x,∠A=∠B=∠ACB=60°
由折叠的性质得:DE=CE,DF=CF,∠EDF=∠ACB=60°
∴∠ADE+∠BDF=180°−∠EDF=120°
∵∠BDF+∠DFB=180°−∠B=120°
∴∠ADE=∠DFB
∴△ADE∽△BFD
∴
即CE:CF=7:8
故答案为:7:8
【点睛】
本题考查了等边三角形的性质,折叠的性质,相似三角形的判定与性质等知识,证明三角形相似是本题的关键.
3、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
4、-2020
【分析】
利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.
【详解】
解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,
则.
故答案为:-2020.
【点睛】
本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.
5、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
| -4 | -1 | 2 | 3 |
-4 |
|
|
|
|
-1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
三、解答题
1、-1
【分析】
根据零指数幂定义、负整数指数幂定义分别化简,并代入三角函数值,计算乘方,最后计算加减法.
【详解】
解:原式
.
【点睛】
此题考查了实数的混合运算,正确掌握运算法则及零指数幂定义、负整数指数幂定义、三角函数值、乘方的计算法则是解题的关键.
2、
(1)
(2)
【分析】
(1)根据结果减去,进而根据整式的加减运算化简即可求得整式;
(2)按要求计算,根据去括号,合并同类项进行计算化简即可.
(1)
解:∵,
∴
(2)
解:∵,
∴
【点睛】
本题考查了整式的加减运算,正确的去括号是解题的关键.
3、这次测试规定时间是小时.
【分析】
根据题意列出算式,计算即可求出值.
【详解】
解:由题意得:
=
=(小时)
【点睛】
此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.
4、
(1)①;②
(2)不成立,
【分析】
(1)①由直角三角形的性质可得出答案;
②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;
(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;
(1)
①∵,,,
∴,
∵sin∠EAB=
∴,
故答案为:30°;
②.
如图1,过点E作交CA的延长线于M,
∵,,
∴,∴,
∴,
∴,
∵将线段AE绕点E顺时针旋转90°得到EF,
∴,,
∴,
在△FEC和△AEM中
,
∴,
∴,
∴,
∵为等腰直角三角形,
∴,
∴;
故答案为:;
(2)
不成立.
如图2,过点F作交BC的延长线于点H.
∴,,
∵,
∴,
在△FEC和△AEM中
,
∴,
∴,,
∴,
∴为等腰直角三角形,
∴.
又∵,
即.
【点睛】
本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.
5、
(1)y=-10x+700
(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元
(3)
【分析】
(1)依题意设y=kx+b,用待定系数法得到结论;
(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;
(3)设利润为w′元,列出函数解析式,根据二次函数的性质求解.
(1)
解:设y=kx+b(k,b为常数,k≠0),
根据题意得:,
解得:,
∴y=-10x+700;
(2)
解:当该商品的进价是40-3000÷300=30元,
设当该商品的售价是x元/件时,月销售利润为w元,
根据题意得:w=y(x-30)=(x-30)(-10x+700)
=-10x2+1000 x-21000=-10(x-50)2+4000,
∴当x=50时w有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;
(3)
解:设利润为w′元,由题意得,
w′=y(x-30-m)
=(x-30-m)(-10x+700)
=-10x2+1000 x+10mx -21000-700m,
∴对称轴是直线x=,
∵-10<0,
∴抛物线开口向下,
∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,
∴,
解得m≥4,
∵,
∴.
【点睛】
本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.
【真题汇总卷】2022年重庆市巴南区中考数学考前摸底测评 卷(Ⅱ)(含答案及详解): 这是一份【真题汇总卷】2022年重庆市巴南区中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了不等式组的最小整数解是,下列计算正确的是,已知和是同类项,那么的值是,下列关于整式的说法错误的是,下列说法正确的是等内容,欢迎下载使用。
【真题汇编】2022年最新中考数学模拟专项测评 A卷(含详解): 这是一份【真题汇编】2022年最新中考数学模拟专项测评 A卷(含详解),共17页。试卷主要包含了下列二次根式的运算正确的是,下列说法正确的有,已知ax2+24x+b=,若,则的值是等内容,欢迎下载使用。
【真题汇编】2022年重庆市永川区中考数学模拟真题测评 A卷(含详解): 这是一份【真题汇编】2022年重庆市永川区中考数学模拟真题测评 A卷(含详解),共21页。试卷主要包含了已知线段AB,下列说法正确的有,若,则值为,下列各对数中,相等的一对数是,若,则的值为等内容,欢迎下载使用。