【难点解析】2022年北京市顺义区中考数学三年真题模拟 卷(Ⅱ)(含答案详解)
展开2022年北京市顺义区中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1 B.1 C.﹣2 D.2
2、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
3、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线 B.经过一点有无数条直线
C.两点之间,线段最短 D.一条线段等于已知线段
4、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
5、如图,点C、D分别是线段AB上两点(,),用圆规在线段CD上截取,,若点E与点F恰好重合,,则( )
A.4 B.4.5 C.5 D.5.5
6、下列方程是一元二次方程的是( )
A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=3
7、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )
A. B.2 C.3 D.4
8、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
9、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
10、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )
A.10米 B.12米 C.15米 D.20米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
2、如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=_____°.
3、方程(2x﹣1)2=25的解是 ___;
4、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知二次函数y=ax2+bx+1的图象经过点A(﹣1,6)与B(4,1)两点.
(1)求这个二次函数的表达式;
(2)在图中画出该二次函数的图象;
(3)结合图象,写出该函数的开口方向、对称轴和顶点坐标.
2、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)
(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;
(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?
3、如图,抛物线y=x2﹣2x+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,﹣3).
(1)求AB的长.
(2)将点A向上平移n个单位至点E,过点E作DFx轴,交抛物线与点D,F.当DF=6时,求n的值.
4、为了打造年级体育啦啦队,某年级准备投入一笔资金为啦啦队队员配置一些花球.经过多方比较,准备在甲、乙两个商家中选择一个.已知花球单价是市场统一标价为20元,由于购买数量多,两个商家都给出了自己的优惠条件(见表):
甲商家 | 乙商家 | ||
购买数量x(个) | 享受折扣 | 购买数量y(个) | 享受折扣 |
x≤50的部分 | 9.5折 | y≤100的部分 | 9折 |
50<x2≤00的部分 | 8.8折 | 100<y≤200的部分 | 8.5折 |
x>200的部分 | 8折 | y>200的部分 | 8折 |
(1)如果需要购买100个花球,请问在哪个商家购买会更便宜?
(2)经年级学生干部商议,最终决定选择在乙商家购买花球,并根据实际需要分两次共购买了350个花球,且第一次购买数量小于第二次,共花费140元,请问两次分别购买了多少个花球?
5、如图,中,,于D,点E在AD上,且.
(1)求证:≌;
(2)判断直线BE和AC的位置关系,并说明理由.
-参考答案-
一、单选题
1、B
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
2、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
3、C
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
4、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
5、A
【分析】
根据题意可得,,再由即可得到答案.
【详解】
解:CE=AC,DF=BD,点E与点F恰好重合,
∴CE=AC,DE=BD,
∴,,
∴,
故选A.
【点睛】
本题主要考查了与线段中点有关的计算,解题的关键在于能够根据题意得到,.
6、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
7、B
【分析】
由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.
【详解】
解:沿折叠,使点落在点处,
,,
又∵,
∴,
∴,
,
又为的中点,AE=AE'
∴,
,
即,
.
故选:B.
【点睛】
本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.
8、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
9、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
10、C
【分析】
将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.
【详解】
解:如图,
(1)AB==;
(2)AB==15,
由于15<,
则蚂蚁爬行的最短路程为15米.
故选:C.
【点睛】
本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.
二、填空题
1、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
2、40
【分析】
根据线段垂直平分线的性质得到EC=EA,根据矩形的性质得到∠DCA=∠EAC=20°,结合图形计算,得到答案.
【详解】
解:∵MN是AC的垂直平分线,
∴EC=EA,
∴∠ECA=∠EAC,
∵四边形ABCD是矩形,
∴AB∥CD,∠D=90°,
∴∠DCA=∠EAC=90°-70°=20°,
∴∠DCE=∠DCA+∠ECA=20°+20°=40°,
故答案为:40.
【点睛】
本题考查的是矩形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
3、x1=3,x2=-2
【分析】
通过直接开平方求得2x-1=±5,然后通过移项、合并同类项,化未知数系数为1解方程.
【详解】
解:由原方程开平方,得
2x-1=±5,
则x=,
解得,x1=3,x2=-2.
故答案是:x1=3,x2=-2.
【点睛】
本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
4、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
5、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
三、解答题
1、
(1)
(2)见解析
(3)开口向上,对称轴为,顶点坐标为
【分析】
(1)根据待定系数法求二次函数解析式即可;
(2)根据顶点,对称性描出点,进而画出该二次函数的图形即可;
(3)根据函数图像直接写出开口方向、对称轴和顶点坐标.
(1)
将点A(﹣1,6)与B(4,1)代入y=ax2+bx+1
即
解得
(2)
由,确定顶点坐标以及对称轴,根据对称性求得描出点关于的对称点,作图如下,
(3)
根据图象可知,的图象开口向上,对称轴为,顶点坐标为
【点睛】
本题考查了待定系数法求解析式,画二次函数图象,的图象与性质,求得解析式是解题的关键.
2、
(1)这片草场每周生长的草量和牧民进驻前原有草量的比为
(2)最多可以放牧225只羊
【分析】
(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;
(2)设可以放牧只羊,列出一元一次不等式,即可求解.
(1)
解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,
依题意得:,
解得:,
.
答:这片草场每周生长的草量和牧民进驻前原有草量的比为.
(2)
设可以放牧只羊,
依题意得:,
解得:.
答:最多可以放牧225只羊.
【点睛】
本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.
3、(1)AB的长为4;(2)n的值为5.
【分析】
(1)利用二次函数表达式,求出其与x轴的交点、的坐标,其横坐标之差的绝对值即为AB的长.
(2)利用二次函数的对称性,求出F点的横坐标,代入二次函数表达式,求出纵坐标,最后求得n的值.
【详解】
(1)解:把(0,-3)代入y=x2-2x-c
得c=-3,
令y=x2-2x-3=0,
解得x1=3,x2=-1,
∴A(-1,0),B(3,0),
∴AB=3-(-1)=4.
(2)解:作对称轴x=1交DF于点G,G点横坐标为1,如图所示:
由题意可设:点F坐标为(,),
、关于二次函数的对称轴.
DG=GF==3,
∴,
∴n=5.
【点睛】
本题主要是考查了二次函数与x轴交点坐标以及二次函数的对称性,熟练应用二次函数的对称性进行解题,是求解这类二次函数题目的关键.
4、
(1)在乙商家购买会更便宜
(2)第一次购买140个花球,第二次购买210个花球
【分析】
(1)利用总价=单价×数量,结合两个商家的优惠条件,即可分别求出在两个商家购买所需费用,比较后可得出在乙商家购买会更便宜;
(2)设第一次购买m个花球,则第二次购买(350-m)个花球,分0<m≤100,100<m≤150及150<m<175三种情况考虑,根据两次购买共花费6140元,即可得出关于m的一元一次方程,解之即可得出第一次购买花球的数量,再将其代入(350-m)中即可求出第二次购买花球的数量.
【小题1】
解:在甲商家购买所需费用为:
20×0.95×50+20×0.88×(100-50)=20×0.95×50+20×0.88×50=950+880=1830(元);
在乙商家购买所需费用为20×0.9×100=1800(元).
∵1830>1800,
∴在乙商家购买会更便宜.
【小题2】
设第一次购买m个花球,则第二次购买(350-m)个花球.
当0<m≤100时,20×0.9m+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,
解得:m=120(不合题意,舍去);
当100<m≤150时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,
解得:m=140,
∴350-m=350-140=210;
当150<m<175时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85(350-m-100)=6150≠6140,
∴不存在该情况.
答:第一次购买140个花球,第二次购买210个花球.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
5、
(1)见详解;
(2)BE⊥AC;理由见详解.
【分析】
(1)先得到AD=BD,,然后利用HL即可证明≌;
(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立.
(1)
解:∵于D,
∴,
∵,
∴,
∴,
∵,
∴≌(HL);
(2)
解:BE⊥AC;
理由如下:
延长BE,交AC于点F,如图:
由(1)可知,≌,
∴,
∵,
∴,
∴BE⊥AC;
【点睛】
本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件.
【难点解析】2022年北京市顺义区中考数学历年真题汇总 (A)卷(含详解): 这是一份【难点解析】2022年北京市顺义区中考数学历年真题汇总 (A)卷(含详解),共25页。试卷主要包含了下列计算错误的是,下列利用等式的性质,错误的是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市顺义区中考数学真题模拟测评 (A)卷(含答案及详解): 这是一份【真题汇总卷】2022年北京市顺义区中考数学真题模拟测评 (A)卷(含答案及详解),共21页。
【真题汇编】2022年北京市顺义区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】2022年北京市顺义区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共32页。试卷主要包含了下列命题中,真命题是等内容,欢迎下载使用。