【历年真题】:2022年福建省长汀县中考数学三年真题模拟 卷(Ⅱ)(含答案解析)
展开2022年福建省长汀县中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为( )
A.4 B.3 C.2 D.1
2、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间)
B.点B与点D重合
C.点B在线段CD的延长线上
D.点B在线段DC的延长线上
3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
4、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A. B. C. D.
5、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0
6、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
7、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
8、多项式去括号,得( )
A. B. C. D.
9、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
10、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法判断
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是方程的解,则a的值是______.
2、在圆内接四边形ABCD中,,则的度数为______.
3、如图,两个正方形的边长分别为a,b.若a+b=5,ab=5,则图中阴影部分的面积为_____.
4、如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在,则重叠部分的图形的周长为___.
5、在,,,,中,负数共有______个.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cos245°.
2、解方程:
(1);
(2).
3、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.
(1)甲同学选取A图片链接题目的概率是 ;
(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)
4、如图,在Rt△ABC中,,cm.点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t(s)(其中).
(1)当t为何值时,四边形DEFC的面积为18?
(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由.
(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由.
5、如图,C,D是以AB为直径的半圆周的三等分点,CD=8cm.
(1)求∠ACD的度数;
(2)求阴影部分的面积.
-参考答案-
一、单选题
1、B
【分析】
由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.
【详解】
解:由图象可知,a>0,b<0,∴ab<0,①正确;
因与x轴交于点(−1,0)和(x,0),且1<x<2,所以对称轴为直线−<1,
∴−b<2a,∴2a+b>0,②错误;
由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,
∴3a+c>0,③正确;
由增减性可知m<−1,am2+bm+c>0,
当x=1时,a+b+c<0,即a+b<am2+bm,④正确.
综上,正确的有①③④,共3个,
故选:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.
2、A
【分析】
根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),故选项A正确,
点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;
点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;
点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.
故选:A.
【点睛】
本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.
3、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
4、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
5、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
6、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
7、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
8、D
【分析】
利用去括号法则变形即可得到结果.
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
9、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
10、B
【分析】
根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.
【详解】
解:∵Δ=(-2)2-4×1×(-4)= 20>0,
∴方程x2-2x-4=0有两个不相等的实数根.
故选:B.
【点睛】
本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.
二、填空题
1、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
2、110°
【分析】
根据圆内接四边形对角互补,得∠D+∠B=180°,结合已知求解即可.
【详解】
∵圆内接四边形对角互补,
∴∠D+∠B=180°,
∵
∴∠D=110°,
故答案为:110°.
【点睛】
本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.
3、2.5
【分析】
先利用阴影部分的面积等于大的正方形的面积的一半减去三个三角形的面积得到阴影面积为:,再利用完全平方公式的变形求解面积即可.
【详解】
解: 两个正方形的边长分别为a,b,
a+b=5,ab=5,
故答案为:
【点睛】
本题考查的是完全平方公式在几何图形中的应用,利用完全平方公式的变形求解代数式的值,掌握“”是解本题的关键.
4、##
【分析】
先说明△AFD′≌△CFB可得BF=D′F,设D′F=x,在Rt△AFD′中根据勾股定理求得x,再根据AF=AB−BF求得AF,勾股定理求得,最后根据周长公式求解即可.
【详解】
解:由于折叠可得:AD′=BC,∠D′=∠B,
又∵∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=x,则AF=8−x,
在Rt△AFD′中,(8−x)2=x2+42,解得:x=3,
∴AF=AB−FB=8−3=5,
在中,
∴重叠部分的图形的周长为
故答案为:
【点睛】
本题考查了勾股定理的正确运用,在直角三角形AFD′中运用勾股定理求出BF的长是解答本题的关键.
5、3
【分析】
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
三、解答题
1、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
2、
(1)
(2)
【分析】
(1)先去括号,再移项合并同类项,即可求解;
(2)先去分母,再去括号,然后移项合并同类项,即可求解.
(1)
解:去括号得:
移项合并同类项得:
解得:;
(2)
解:去分母得:
去括号得: ,
移项合并同类项得:
解得:.
【点睛】
本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.
3、
(1)
(2)图表见解析,
【分析】
(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;
(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.
(1)
解:根据题意得:甲同学选取A图片链接题目的概率是;
(2)
解:根据题意,列表如下:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A,B),(B,A),
∴P(全班同学作答图片A和B所链接的题目).
【点睛】
本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键.
4、
(1)
(2)不存在,说明见解析
(3)能,
【分析】
(1)由题意知,四边形为梯形,则,,求t的值,由得出结果即可;
(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;
(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,,故有,求t的值,若,则存在;否则不存在.
(1)
解:∵
∴是等腰直角三角形,
∵
∴,
∴是等腰直角三角形,四边形为直角梯形
∴
∵
∴
∵
∴
解得或.
∵且
∴
∴.
(2)
解:假设存在某个时刻t,使得.
∴
化简得
解得或
∵
∴不存在某个时刻t,使得.
(3)
解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形
∴,即
解得
∵
∴当时,点E在以DF为直径的圆上.
【点睛】
本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.
5、
(1)
(2)
【分析】
(1)连接、,根据,是以为直径的半圆周的三等分点,证明出、是等边三角形,即可求解;
(2)根据(1)得、是等边三角形,证明出,可以将问题转化为,即可求解.
(1)
解:解:连接、,
,是以为直径的半圆周的三等分点,
,,
又,
、是等边三角形,
;
(2)
解:根据(1)得、是等边三角形,
在和中,,
,
.
【点睛】
本题考查了扇形面积的计算,全等三角形的判定及性质、圆心角定理,解题的关键是将阴影部分的面积转化为扇形的面积,难度一般.
【真题汇编】2022年福建省长汀县中考数学历年真题练习 (B)卷(含答案及解析): 这是一份【真题汇编】2022年福建省长汀县中考数学历年真题练习 (B)卷(含答案及解析),共24页。试卷主要包含了下列关于整式的说法错误的是等内容,欢迎下载使用。
【历年真题】最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解): 这是一份【历年真题】最新中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共25页。试卷主要包含了如图,点在直线上,平分,,,则,下列二次根式中,最简二次根式是等内容,欢迎下载使用。
【历年真题】2022年中考数学三年真题模拟 卷(Ⅱ)(含答案解析): 这是一份【历年真题】2022年中考数学三年真题模拟 卷(Ⅱ)(含答案解析),共19页。试卷主要包含了已知点A,抛物线的顶点坐标是,点P,如图所示,由A到B有①等内容,欢迎下载使用。