【历年真题】:2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解)
展开2022年内蒙古赤峰市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、由抛物线平移得到抛物线则下列平移方式可行的是( )
A.向左平移4个单位长度 B.向右平移4个单位长度
C.向下平移4个单位长度 D.向上平移4个单位长度
2、多项式去括号,得( )
A. B. C. D.
3、已知关于x,y的方程组和的解相同,则的值为( )
A.1 B.﹣1 C.0 D.2021
4、下列说法正确的是( )
A.的系数是 B.的次数是5次
C.的常数项为4 D.是三次三项式
5、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
6、下列各数中,是不等式的解的是( )
A.﹣7 B.﹣1 C.0 D.9
7、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
8、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=1
9、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )
A. B. C. D.
10、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )
A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4
C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
2、若机器人在数轴上某点第一步从向左跳1个单位到,第二步从向右跳2个单位到,第三步从向左跳3个单位到,第四步从向右跳4个单位到,按以上规律跳2018步,机器人落在数轴上的点,且所表示的数恰好是2019,则机器人的初始位置所表示的数是__________.
3、甲乙两人到沙漠中探险,他们每天向沙漠深处走30千米,已知一个人最多可以带36天的食物和水,若不准将部分食物存放于途中,其中一个人最远可以深入沙漠______千米.(要求最后两个人都要返回出发点)
4、某商场在“元旦”期间举行促销活动,顾客根据其购买商品标价的一次性总额,可以获得相应的优惠方法:①如不超过800元,则不予优惠;②如超过800元,但不超过1000元,则按购物总额给予8折优惠;③如超过1000元,则其中1000元给予8折优惠,超过1000元的部分给予7折优惠.促销期间,小明和他妈妈分别看中一件商品,若各自单独付款,则应分别付款720元和1150元;若合并付款,则他们总共只需付款______元.
5、小明的妈妈在银行里存入人民币5000元,存期两年,到期后可得人民币5150元,如果设这项储蓄的年利率是x,根据题意,可列出方程是__________________.
三、解答题(5小题,每小题10分,共计50分)
1、我们定义:如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.
(1)请说明方程是倍根方程;
(2)若是倍根方程,则,具有怎样的关系?
(3)若一元二次方程是倍根方程,则,,的等量关系是____________(直接写出结果)
2、如图,在Rt△ABC中,,cm.点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t(s)(其中).
(1)当t为何值时,四边形DEFC的面积为18?
(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由.
(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由.
3、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:
| 鼻梁条 | 耳带 |
成本 | 90元/箱 | 230元/箱 |
制作配件数目 | 25000只/箱 | 100000只/箱 |
(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;
(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?
(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,
方案一:全部大包销售;
方案二:全部小包销售;
方案三:同时采用两种包装方式且恰好用7天完成任务.
请你通过计算,为口罩厂做出决策.
4、解下列方程:
(1);
(2)
5、先化简再求值:其中,
-参考答案-
一、单选题
1、A
【分析】
抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.
【详解】
解:抛物线向左平移4个单位长度可得: 故A符合题意;
抛物线向右平移4个单位长度可得:故B不符合题意;
抛物线向下平移4个单位长度可得: 故C不符合题意;
抛物线向上平移4个单位长度可得: 故D不符合题意;
故选A
【点睛】
本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.
2、D
【分析】
利用去括号法则变形即可得到结果.
【详解】
解:−2(x−2)=-2x+4,
故选:D.
【点睛】
本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.
3、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
4、A
【分析】
根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.
【详解】
解:A、的系数是,故选项正确;
B、的次数是3次,故选项错误;
C、的常数项为-4,故选项错误;
D、是二次三项式,故选项错误;
故选A.
【点睛】
本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.
5、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
6、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
7、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
8、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
9、A
【分析】
由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.
【详解】
解:∵128=1×128=2×64=4×32=8×16,
∴F(128)=,
故选:A.
【点睛】
本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.
10、B
【分析】
将根据完全平方公式展开,进而根据代数式相等即可求解
【详解】
解:∵ ,ax2+24x+b=(mx﹣3)2,
∴
即
故选B
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
二、填空题
1、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
2、1010
【分析】
由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地的距离是1009个单位,且在的右侧,根据所表示的数恰是2019,即可求得初始位置点所表示的数.
【详解】
解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从向右跳2个单位到,A2表示a-1+2= a+1,第三步从向左跳3个单位到,A3表示a+1-3,第四步从向右跳4个单位到,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而,
所以电子跳蚤跳2018步后A2018表示的数为a+1009,
又因为表示2019,
∴a+1009=2019,
∴a=1010,
所以表示1010.
故答案为:1010.
【点睛】
本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.
3、720
【分析】
因为要求最远,所以两人同去耗食物,所以只一人去,另一人中途返回,两人一起出发.12天后两人都只剩24天的食物.乙分给甲12天的食物后独自带着12天的食物返回,也就是甲一共有48天的食物.
【详解】
解:[(36+36÷3)÷2]×30
=24×30
=720(千米).
答:其中一人最远可以深入沙漠720千米.
故答案为:720.
【点睛】
此题考查了有理数的混合运算,生活中方法的最佳选择,首先要想到去多远,都得返回,所以每前进一步,都要想着返回的食物,进而找到最佳答案.
4、1654或1780或1654
【分析】
根据题意知付款720元时,其实际标价为为720或900元;付款1150元,实际标价为1500元,再分别计算求出一次购买标价2220元或2400元的商品应付款即可.
【详解】
解:由题意知付款720元,实际标价为720或720×=900(元),
付款1150元,实际标价肯定超过1000元,
设实际标价为x,
依题意得:(x-1000)×0.7+1000×0.8=1150,
解得:x=1500(元),
如果一次购买标价720+1500=2220(元)的商品应付款:
1000×0.8+(2220-1000)×0.7=1654(元).
如果一次购买标价900+1500=2400(元)的商品应付款:
1000×0.8+(2400-1000)×0.7=1780(元).
故答案是:1654或1780.
【点睛】
本题考查了一元一次方程的应用,通过优惠政策利用解方程求出小明和他妈妈分别看中商品的售价是解题的关键.
5、5000+5000x×2=5150
【分析】
设这项储蓄的年利率是x,根据等量关系本息和为本金+本金×利率×期数=到期后的钱数,列方程5000+5000x×2=5150即可.
【详解】
解:设这项储蓄的年利率是x,依题意得:5000+5000x×2=5150.
故答案为:5000+5000x×2=5150.
【点睛】
本题考查银行存款本息和问题,掌握本金是存入银行的现金,利息=本金×利率×期数,本息和是本金与利息的和是解题关键.
三、解答题
1、
(1)见解析
(2),或
(3)
【分析】
(1)因式分解法解一元二次方程,进而根据定义进行判断即可;
(2)因式分解法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解;
(3)公式法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解.
(1)
是倍根方程,理由如下:
解方程,
得,,
∵2是1的2倍,
∴一元二次方程是倍根方程;
(2)
是倍根方程,且,
,或,
∴,或
(3)
解:是倍根方程,
,或
即或
或
即或
故答案为:
【点睛】
本题考查了倍根方程的定义,解一元二次方程,掌握解一元二次方程的方法是解题的关键.
2、
(1)
(2)不存在,说明见解析
(3)能,
【分析】
(1)由题意知,四边形为梯形,则,,求t的值,由得出结果即可;
(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;
(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,,故有,求t的值,若,则存在;否则不存在.
(1)
解:∵
∴是等腰直角三角形,
∵
∴,
∴是等腰直角三角形,四边形为直角梯形
∴
∵
∴
∵
∴
解得或.
∵且
∴
∴.
(2)
解:假设存在某个时刻t,使得.
∴
化简得
解得或
∵
∴不存在某个时刻t,使得.
(3)
解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形
∴,即
解得
∵
∴当时,点E在以DF为直径的圆上.
【点睛】
本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.
3、
(1)44,22
(2)0.2元
(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利
【分析】
(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;
(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;
(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求出 .再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可
(1)
解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,
故答案为44;22;
(2)
解:(元).
(元).
(元).
答:每片口罩的成本是0.2元.
(3)
方案一:全部大包销售:
天.
∴
(元).
方案二:全部小包销售:
天>7天(舍去).
方案三:设包装小包的天数为x,
由题意得:.
解得:.
∴(片).
∴,
=23200+183200-12000-88000,
,
(元).
∵,
∴选择方案三.
答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.
【点睛】
本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.
4、
(1)
(2)
【解析】
(1)
解:,
,
解得:;
(2)
解:,
,
,
,
解得:.
【点睛】
本题考查了一元一次方程的求解,解题的关键是掌握解一元一次方程的一般步骤.
5、,
【分析】
先根据去括号和合并同类项法则化简,再把,代入计算即可.
【详解】
解:,
=
当时,原式=.
【点睛】
本题考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则及有理数的混合运算.
【历年真题】湖南省怀化市中考数学模拟真题测评 A卷(含详解): 这是一份【历年真题】湖南省怀化市中考数学模拟真题测评 A卷(含详解),共25页。试卷主要包含了如图,E,下列图像中表示是的函数的有几个,单项式的次数是,一元二次方程的根为等内容,欢迎下载使用。
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
【历年真题】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解): 这是一份【历年真题】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解),共29页。试卷主要包含了化简的结果是等内容,欢迎下载使用。