【历年真题】:2022年西安市长安区中考数学备考模拟练习 (B)卷(含答案及解析)
展开2022年西安市长安区中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )
A.a≤2 B.a≤2且a≠0 C.a<2 D.a<2且a≠0
2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为( )
A.4 B.3 C.2 D.1
3、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
4、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间)
B.点B与点D重合
C.点B在线段CD的延长线上
D.点B在线段DC的延长线上
5、若,则的值为( )
A. B.8 C. D.
6、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
7、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
8、若,则值为( )
A. B. C.-8 D.
9、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为( )
A. B. C. D.
10、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、按下面的程序计算,若开始输入的值为正整数,
规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果____.若经过2次运算就停止,则可以取的所有值是____.
2、在统计学中,样本的方差可以近似地反映总体的______.(在①“集中趋势”,②“波动大小”,③“平均值”,④“最大值”中选择合适的序号填写在横线上)
3、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
4、当代数式的值为7时,的值为__________.
5、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.
三、解答题(5小题,每小题10分,共计50分)
1、我们将平面内点与多边形的位置关系分为三类:①点在多边形的内部;②点在多边形的边上;③点在多边形的外部.
在平面直角坐标系x0y中,抛物线y=ax2-2ax-3a(a>0)与y轴交于点A,过顶点B作BC⊥x轴于点C,P是BC的中点,连接OP.将线段OP平移后得到线段.
(1)若平移的方向为向右,当点P’在该抛物线上时,判断点C是否在四边形的边上,并说明理由;
(2)若平移的方向为向下,平移的距离是(a+1)个单位长度,其中a<.记抛物线上点A,B之间的部分(不含端点)为图象T,M是图象T上任意一点,判断点M与四边形的位置关系,并说明理由.
2、给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.
(1)关于x的二次多项式3x2+2x-1的特征系数对为________;
(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;
(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3-10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为________.
3、如图,长方形ABCD中,AB>AD,把长方形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)图中有 个等腰三角形;(请直接填空,不需要证明)
(2)求证:△ADE≌△CED;
(3)请证明点F在线段AC的垂直平分线上.
4、
5、已知:在中,,,,点在边上,过点作,点在边上,点在的延长线上,联结.
(1)如图1,当时,求证:;
(2)如图2,当时,求线段的长.
-参考答案-
一、单选题
1、B
【分析】
根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案
【详解】
解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,
解得a≤2且a≠0.
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
2、B
【分析】
由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.
【详解】
解:由图象可知,a>0,b<0,∴ab<0,①正确;
因与x轴交于点(−1,0)和(x,0),且1<x<2,所以对称轴为直线−<1,
∴−b<2a,∴2a+b>0,②错误;
由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,
∴3a+c>0,③正确;
由增减性可知m<−1,am2+bm+c>0,
当x=1时,a+b+c<0,即a+b<am2+bm,④正确.
综上,正确的有①③④,共3个,
故选:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.
3、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
4、A
【分析】
根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),故选项A正确,
点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;
点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;
点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.
故选:A.
【点睛】
本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.
5、D
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
6、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
7、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
8、C
【分析】
根据实数的非负性,得a=-2,b=3,代入幂计算即可.
【详解】
∵,
∴a=-2,b=3,
∴== -8,
故选C.
【点睛】
本题考查了实数的非负性,幂的计算,熟练掌握实数的非负性是解题的关键.
9、C
【分析】
如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.
【详解】
解:如图连接OC,OD
∵
∴是等边三角形
∴
由题意知,
故选C.
【点睛】
本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.
10、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
二、填空题
1、11, 2或3或4.
【分析】
根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解.
【详解】
解:当时,第1次运算结果为,第2次运算结果为,
当时,输出结果,
若运算进行了2次才停止,则有,
解得:.
可以取的所有值是2或3或4,
故答案为:11,2或3或4.
【点睛】
此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组.
2、②
【分析】
根据方差反映数据的波动大小解答.
【详解】
解:在统计学中,样本的方差可以近似地反映总体的波动大小,
故答案为:②.
【点睛】
此题考查了方差的性质:方差反映了数据的波动差异水平是否稳定.
3、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
4、2
【分析】
由条件可得,而,从而可求得结果的值.
【详解】
解:∵,
∴,
∴.
故答案为:2.
【点睛】
本题是求代数式的值,关键是由条件求得,运用了整体思想.
5、128°
【分析】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.
【详解】
分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图
由对称的性质得:AN=FN,AM=EM
∴∠F=∠NAD,∠E=∠MAB
∵AM+AN+MN=EM+FN+MN≥EF
∴当M、N在线段EF上时,△AMN的周长最小
∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°
故答案为:128°
【点睛】
本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.
三、解答题
1、(1)点C在四边形边上,理由见详解;(2)点M在四边形的内部,理由见详解.
【分析】
(1)由题意易得抛物线的对称轴为直线,顶点坐标,点,则有点,然后设平移后点,把点的坐标代入解析式求解m,进而问题可求解;
(2)由(1)及题意易得,则有,然后问题可求解.
【详解】
解:(1)点C在四边形边上,理由如下:
令x=0,则有y= -3a,即,
由抛物线y=ax2-2ax-3a(a>0)可知:,
∴顶点,对称轴为直线,
∵BC⊥x轴,
∴,
∵P是BC的中点,
∴,
当线段OP向右平移后得到线段的函数图象如图所示:
设平移后点,
∵点在该抛物线上,
∴,解得:(负根舍去),
∴,
∴点C在四边形边上;
(2)当线段OP向下平移(a+1)个单位长度后得到线段的函数图象如图所示:
∴,
∵,
∴,
∵顶点坐标,点,
∴,
∴点都在点A、B的下方,
∵抛物线上点A,B之间的部分(不含端点)为图象T,M是图象T上任意一点,
∴点M在四边形的内部.
【点睛】
本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.
2、
(1)(3,2,-1)
(2)
(3)-6
【分析】
(1)根据特征系数对的定义即可解答;
(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;
(3)根据特征多项式的定义先写出多项式,然后再令x=-2即可得出答案.
(1)
解:关于x的二次多项式3x2+2x-1的特征系数对为 (3,2,-1),
故答案为:(3,2,-1);
(2)
解:∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,
有序实数对(1,-4,4)的特征多项式为:x2-4x+4,
∴(x2+4x+4)(x2-4x+4)
=x4-4x3+4x2+4x3-16x2+16x+4x2-16x+16
=x4-8x2+16;
(3)
解:根据题意得(px2+qx-1)(mx2+nx-2)=2x4+x3-10x2-x+2,
令x=-2,
则(4p-2q-1)(4m-2n-2)=2×16-8-10×4+2+2,
∴(4p-2q-1)(4m-2n-2)=32-8-40+2+2,
∴(4p-2q-1)(4m-2n-2)=-12,
∴(4p-2q-1)(2m-n-1)=-6,
故答案为:-6.
【点睛】
本题考查了多项式乘多项式,新定义问题,给x赋予特殊值-2是解题的关键.
3、
(1)2
(2)证明见解析
(3)证明见解析
【分析】
(1)由题意知CE=BC=AD,∠EAC=∠BAC=∠DCA,有△ACF为等腰三角形;在和中,,知,有∠DEA=∠EDC,有△DEF为等腰三角形;
(2)在和中,,可得;
(3)由于,,,有,,故,进而可得出结果.
(1)
解:有△ACF和△DEF共2个等腰三角形
证明如下:由折叠的性质可知CE=BC=AD,∠EAC=∠BAC
∵
∴∠EAC=∠DCA
∴△ACF为等腰三角形;
在和中
∵
∴
∴∠DEA=∠EDC
∴△DEF为等腰三角形;
故答案为:2.
(2)
证明:∵四边形ABCD是长方形
∴,
由折叠的性质可得:,
∴,
在和中,
∴.
(3)
证明:由(1)得
∴,即
∴
又∵
∴
∴
∴点F在线段AC的垂直平分线上.
【点睛】
本题考查了几何图形折叠的性质,矩形,等腰三角形的判定与性质,三角形全等,垂直平分线等知识.解题的关键在于灵活运用知识.
4、
【分析】
先计算特殊角的三角函数值,再按照运算顺序计算即可.
【详解】
解:原式
.
【点睛】
本题考查了特殊角的三角函数值,实数的运算,熟记特殊角的三角函数值及实数各运算法则是解题的关键.
5、
(1)见解析
(2)
【分析】
(1)根据直角三角形的性质即定义三角形的性质得出∠FBA=∠BFC,进而得到FC=2AC,由∠FBA=∠BFC,结合∠FEB=∠FBC=90°,即可判定△FEB∽△CBF,根据相似三角形的性质即可得解;
(2)过点A作AH⊥BC于点H,过点B作BM⊥CF于点M,根据等腰三角形的性质得到CH=4,根据勾股定理得到AH=3,根据锐角三角函数得到CM=,进而得到AM=,根据∠FEA=∠BMC=90°,∠FAE=∠BAM,即可判定△AEF∽△AMB,根据相似三角形的性质求解即可.
(1)
∵,
∴.
∵,
∴,,
∴.
∴,
∴,即是的中点.
∴,
∵,
∴.
∴.
在与中,
,
∴,
∴,
∴,
∴.
(2)
如图,过点作,垂足为,
∴.
∵,,
∴.
在中,由勾股定理得,,
过点作,垂足为,
∴,
,即.
∴,
∴.
在中,由勾股定理得,
∵,
∴,
∴.
在与中,
,
∴,
∴,
∵,
∴.
∴,
∴
【点睛】
此题考查了相似三角形的判定与性质、等腰三角形的性质、勾股定理,熟练掌握相似三角形的判定与性质并作出合理的辅助线是解题的关键.
模拟真题:2022年西安市长安区中考数学历年真题定向练习 卷(Ⅰ)(含答案解析): 这是一份模拟真题:2022年西安市长安区中考数学历年真题定向练习 卷(Ⅰ)(含答案解析),共20页。
【历年真题】:2022年西安市长安区中考数学备考模拟练习 (B)卷(含答案及解析): 这是一份【历年真题】:2022年西安市长安区中考数学备考模拟练习 (B)卷(含答案及解析),共26页。
【历年真题】2022年中考数学备考模拟练习 (B)卷(含答案及详解): 这是一份【历年真题】2022年中考数学备考模拟练习 (B)卷(含答案及详解),共21页。试卷主要包含了已知等腰三角形的两边长满足+,某玩具店用6000元购进甲,的相反数是等内容,欢迎下载使用。

