【高频真题解析】2022年重庆市沙坪坝区中考数学真题模拟测评 (A)卷(含答案及详解)
展开2022年重庆市沙坪坝区中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则代数式的值为( )
A.6 B.8 C.12 D.16
2、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.
A. B. C. D.
3、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )
A.1 B.﹣1 C.2 D.﹣2
4、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.
A. B. C. D.
5、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
6、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )
A. B. C. D.
7、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).
分数 | 25 | 26 | 27 | 28 | 29 | 30 |
人数 | 3 | 5 | 10 | 14 | 12 | 6 |
A.该组数据的众数是28分 B.该组数据的平均数是28分
C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上
8、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
9、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
10、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若a、b为实数,且,则的值是____.
2、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
3、已知3m=a,3n=b,则33m+2n的结果是____.
4、一个实数的平方根为与,则这个实数是________.
5、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
三、解答题(5小题,每小题10分,共计50分)
1、画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.
(1)请画出从正面看、从左面看、从上面看的平面图形.
(2)小立方体的棱长为3cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.
(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.
2、已知点,则点到轴的距离为______,到轴的距离为______.
3、已知:如图,在中,
(1)求证
(2)如果,求的长.
4、某中学为了了解学生“大课间操”的活动情况,在七、八、九年级学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如图所示的统计图表.其中八年级学生最喜欢排球的人数为12人.
七年级学生最喜欢的运动项目人数统计表
项目 | 篮球 | 排球 | 跳绳 | 踢键子 | 其他 |
人数/人 | 8 | 7 | 15 | m | 6 |
请根据统计图表解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)七年级学生“最喜欢踢键子”的学生人数________.
(3)补全九年级学生最喜欢的运动项目人数统计图.
(4)求出所有“最喜欢跳绳”的学生占抽样总人数的百分比.
5、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
-参考答案-
一、单选题
1、D
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
2、B
【分析】
设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.
【详解】
解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,
依题意得:2x=3(x-2),
解得x=6
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.
3、C
【分析】
根据黄金矩形的定义,得出宽与长的比例即可得出答案.
【详解】
解:黄金矩形的宽与长的比等于黄金数,
,
.
故选:C.
【点睛】
本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.
4、B
【分析】
由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.
【详解】
解:由题意可得:跳动个单位长度到
从到再跳动个单位长度,
归纳可得:
结合
所以点从跳动到达跳动了:
个单位长度.
故选B
【点睛】
本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.
5、C
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
6、C
【分析】
根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.
【详解】
解: ∵一圆锥高为4cm,底面半径为3cm,
∴圆锥母线=,
∴圆锥的侧面积=(cm2).
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
7、B
【分析】
由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.
【详解】
解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;
该组数据的平均数是
故B符合题意;
50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,
所以中位数为:(分),故C不符合题意;
因为超过平均数的同学有:
所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;
故选B
【点睛】
本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.
8、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
9、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
10、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
二、填空题
1、
【分析】
由,可得且 再求解的值,从而可得答案.
【详解】
解:,
且
解得:
故答案为:
【点睛】
本题考查的是实数的性质,非负数的性质,求解代数式的值,掌握“绝对值与偶次方的非负性”是解本题的关键.
2、
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
故答案为:
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
3、a
【分析】
根据幂的乘方以及同底数幂的乘法解决此题.
【详解】
解:∵3m=a,3n=b,
∴33m+2n=33m•32n=(3m)3•(3n)2=a3b2.
故答案为:a3b2.
【点睛】
本题主要考查幂的乘方以及同底数幂的乘法的逆运算,熟练掌握幂的乘方以及同底数幂的乘法是解决本题的关键.
4、
【分析】
根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.
【详解】
解:根据题意得:
①这个实数为正数时:
3x+3+x-1=0,
∴x=-,
∴(x-1)2=,
②这个实数为0时:
3x+3=x-1,
∴x=-2,
∵x-1=-3≠0,
∴这个实数不为0.
故答案为:.
【点睛】
本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.
5、
【分析】
过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.
【详解】
过、、…分别作x轴的垂线,垂足分别为、、…,
则,
∵是等腰直角三角形,
∴,
∴,
∴,
其斜边的中点在反比例函数,
∴,即,
∴,
∴,
设,则,此时,代入得:,
解得:,即:,
同理:,
,
……,
∴
故答案为:,.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
三、解答题
1、
(1)见解析;
(2)315cm2 ;
(3)2
【分析】
(1)根据三视图的画法,画出这个简单组合体的三视图即可;
(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;
(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.
(1)
解:如图所示,即为所求:
(2)
解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,
∴一共用12+18+5=35个面需要涂色,
∴涂上颜色部分的总面积
(3)
解:如图所示,一共有2种添加方法.
【点睛】
本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.
2、2 3
【分析】
点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.
【详解】
∵点的坐标为,
∴点到轴的距离为,到轴的距离为.
故答案为:2;3
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
3、
(1)见解析
(2)3
【分析】
(1)根据DE∥BC,可得 ,从而得到,进而得到 ,可证得△AEF∽△ACD,从而得到∠AFE=∠ADC,即可求证;
(2)根据△AEF∽△ACD,可得 ,从而得到AF=12,即可求解.
(1)
证明:∵DE∥BC,
∴ ,
∵,
∴,
∴ ,
∵∠A=∠A,
∴△AEF∽△ACD,
∴∠AFE=∠ADC,
∴EF∥CD;
(2)
∵△AEF∽△ACD,,
∴ ,
∵ ,
∴AF=12,
∴DF=AD-AF=3.
【点睛】
本题主要考查了平行分线段成比例,相似三角形的判定和性质,熟练掌握平行分线段成比例,相似三角形的判定和性质定理是解题的关键.
4、(1)人;(2);(3)作图见解析;(4)
【分析】
(1)根据扇形统计图的性质,得八年级喜欢排球的学生比例,结合八年级学生最喜欢排球的人数计算,即可得八年级抽取的学生数,结合题意,通过计算即可得到答案;
(2)根据(1)的结论,得七年级抽取的学生数为人,根据题意计算,即可得到答案;
(3)根据(1)的结论,得九年级抽取的学生数为人,根据条形统计图的性质补全,即可得到答案;
(4)首先计算得抽取的七、八、九年级学生中喜欢跳绳的人数,根据用样品评估总体的形式分析,即可得到答案.
【详解】
(1)根据题意,八年级喜欢排球的学生比例为:
∵八年级学生最喜欢排球的人数为12人
∴八年级抽取的学生数为:人
∵在七、八、九年级学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查
∴本次调查共抽取的学生人数为:人
(2)根据(1)的结论,得七年级抽取的学生数为人
七年级学生“最喜欢踢键子”的学生人数为:人
∴
故答案为:;
(3)根据(1)的结论,得九年级抽取的学生数为人
∴九年级学生最喜欢跳绳的人数为人
九年级学生最喜欢的运动项目人数统计图如下:
(4)抽取的七、八、九年级学生中,喜欢跳绳的人数为:人
∴所有“最喜欢跳绳”的学生占抽样总人数的百分比为:.
【点睛】
本题考查了调查统计的知识;解题的关键是熟练掌握扇形统计图、条形统计图、用样品评估总体的性质,从而完成求解.
5、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解),共22页。试卷主要包含了计算3.14-的结果为 .,不等式+1<的负整数解有,下列分式中,最简分式是,下列解方程的变形过程正确的是,下列等式成立的是等内容,欢迎下载使用。
【真题汇编】2022年重庆市沙坪坝区中考数学模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇编】2022年重庆市沙坪坝区中考数学模拟测评 卷(Ⅰ)(含答案及详解),共25页。
【历年真题】:中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【历年真题】:中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了在数2,-2,,中,最小的数为,若,则值为,观察下列图形,一组样本数据为1等内容,欢迎下载使用。