2023届高考一轮复习讲义(理科)第九章 平面解析几何 第5讲 第1课时 高效演练分层突破学案
展开A.eq \f(9,8) B.eq \f(3\r(2),2)
C.eq \f(4,3) D.eq \f(3\r(2),4)
解析:选D.因为e=eq \f(c,a)=eq \r(\f(a2-b2,a2))=eq \f(1,3),所以8a2=9b2,所以eq \f(a,b)=eq \f(3\r(2),4).故选D.
2.已知椭圆的中心在坐标原点,长轴长是8,离心率是eq \f(3,4),则此椭圆的标准方程是( )
A.eq \f(x2,16)+eq \f(y2,7)=1
B.eq \f(x2,16)+eq \f(y2,7)=1或eq \f(x2,7)+eq \f(y2,16)=1
C.eq \f(x2,16)+eq \f(y2,25)=1
D.eq \f(x2,16)+eq \f(y2,25)=1或eq \f(x2,25)+eq \f(y2,16)=1
解析:选B.因为a=4,e=eq \f(3,4),
所以c=3,所以b2=a2-c2=16-9=7.
因为焦点的位置不确定,
所以椭圆的标准方程是eq \f(x2,16)+eq \f(y2,7)=1或eq \f(x2,7)+eq \f(y2,16)=1.
3.已知点F1,F2分别为椭圆C:eq \f(x2,4)+eq \f(y2,3)=1的左、右焦点,若点P在椭圆C上,且∠F1PF2=60°,则|PF1|·|PF2|=( )
A.4 B.6
C.8 D.12
解析:选A.由|PF1|+|PF2|=4,|PF1|2+|PF2|2-2|PF1|·|PF2|·cs 60°=|F1F2|2,得3|PF1|·|PF2|=12,所以|PF1|·|PF2|=4,故选A.
4.设椭圆E的两焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与E交于P,Q两点,若△PF1F2为直角三角形,则E的离心率为( )
A.eq \r(2)-1 B.eq \f(\r(5)-1,2)
C.eq \f(\r(2),2) D.eq \r(2)+1
解析:选A.不妨设椭圆E的方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),如图所示,因为△PF1F2为直角三角形,所以PF1⊥F1F2,又|PF1|=|F1F2|=2c,所以|PF2|=2eq \r(2)c,所以|PF1|+|PF2|=2c+2eq \r(2)c=2a,所以椭圆E的离心率e=eq \r(2)-1.故选A.
5.(2020·江西赣州模拟)已知A,B是椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上的两点,且A,B关于坐标原点对称,F是椭圆的一个焦点,若△ABF面积的最大值恰为2,则椭圆E的长轴长的最小值为( )
A.1 B.2
C.3 D.4
解析:选D.如图所示,
设直线AB的方程为ty=x,F(c,0),A(x1,y1),B(x2,y2).
联立eq \b\lc\{(\a\vs4\al\c1(ty=x,,\f(x2,a2)+\f(y2,b2)=1))可得y2=eq \f(a2b2,b2t2+a2)=-y1y2,
所以△ABF的面积S=eq \f(1,2)c|y1-y2|=
eq \f(1,2)ceq \r((y1+y2)2-4y1y2)=ceq \r(\f(a2b2,b2t2+a2))≤cb,当t=0时取等号.
所以bc=2.所以a2=b2+c2≥2bc=4,a≥2.所以椭圆E的长轴长的最小值为4.故选D.
6.(2019·高考全国卷Ⅲ)设F1,F2为椭圆C:eq \f(x2,36)+eq \f(y2,20)=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.
解析:不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c=eq \r(36-20)=4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.
设M(x,y),
则eq \b\lc\{(\a\vs4\al\c1(\f(x2,36)+\f(y2,20)=1,,|F1M|2=(x+4)2+y2=64,,x>0,,y>0,))得eq \b\lc\{(\a\vs4\al\c1(x=3,,y=\r(15),))
所以M的坐标为(3,eq \r(15)).
答案:(3,eq \r(15))
7.(2020·河北衡水三模)“九天揽月”是中华民族的伟大梦想,我国探月工程的进展与实力举世瞩目.近期,“嫦娥四号”探测器实现历史上的首次月背着陆,月球上“嫦娥四号”的着陆点,被命名为天河基地,如图是“嫦娥四号”运行轨道示意图,圆形轨道距月球表面100千米,椭圆形轨道的一个焦点是月球球心,一个长轴顶点位于两轨道相切的变轨处,另一个长轴顶点距月球表面15千米,则椭圆形轨道的焦距为________千米.
解析:设椭圆的长半轴长为a千米,半焦距为c千米,月球半径为r千米.
由题意知eq \b\lc\{(\a\vs4\al\c1(a+c=100+r,,a-c=15+r,))解得2c=85.
即椭圆形轨道的焦距为85千米.
答案:85
8.已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于eq \f(4,5),则椭圆E的离心率的取值范围是________.
解析:根据椭圆的对称性及椭圆的定义可得,A,B两点到椭圆左、右焦点的距离为4a=2(|AF|+|BF|)=8,所以a=2.
又d=eq \f(|3×0-4×b|,\r(32+(-4)2))≥eq \f(4,5),所以1≤b<2.又e=eq \f(c,a)=eq \r(1-\f(b2,a2))=eq \r(1-\f(b2,4)),所以0
9.已知F1,F2分别为椭圆eq \f(x2,2)+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A,B,连接AF2和BF2.
(1)求△ABF2的周长;
(2)若AF2⊥BF2,求△ABF2的面积.
解:(1)因为F1,F2分别为椭圆eq \f(x2,2)+y2=1的左、右焦点,
过F1的直线l与椭圆交于不同的两点A,B,连接AF2和BF2.
所以△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=4eq \r(2).
(2)设直线l的方程为x=my-1,
由eq \b\lc\{(\a\vs4\al\c1(x=my-1,x2+2y2=2)),得(m2+2)y2-2my-1=0.
设A(x1,y1),B(x2,y2),则y1+y2=eq \f(2m,m2+2),y1y2=-eq \f(1,m2+2),
因为AF2⊥BF2,所以eq \(F2A,\s\up6(→))·eq \(F2B,\s\up6(→))=0,
所以eq \(F2A,\s\up6(→))·eq \(F2B,\s\up6(→))=(x1-1)(x2-1)+y1y2
=(my1-2)(my2-2)+y1y2
=(m2+1)y1y2-2m(y1+y2)+4
=eq \f(-m2-1,m2+2)-2m×eq \f(2m,m2+2)+4
=eq \f(-m2+7,m2+2)=0.
所以m2=7.
所以△ABF2的面积S=eq \f(1,2)×|F1F2|×eq \r((y1+y2)2-4y1y2)=eq \f(8,9).
10.已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点为F2(3,0),离心率为e.
(1)若e=eq \f(\r(3),2),求椭圆的方程;
(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且eq \f(\r(2),2)
(2)由eq \b\lc\{(\a\vs4\al\c1(\f(x2,a2)+\f(y2,b2)=1,,y=kx))得(b2+a2k2)x2-a2b2=0.
设A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=eq \f(-a2b2,b2+a2k2),
依题意易知,OM⊥ON,四边形OMF2N为矩形,所以AF2⊥BF2.因为eq \(F2A,\s\up6(→))=(x1-3,y1),eq \(F2B,\s\up6(→))=(x2-3,y2),
所以eq \(F2A,\s\up6(→))·eq \(F2B,\s\up6(→))=(x1-3)(x2-3)+y1y2
=(1+k2)x1x2+9=0.
即eq \f(-a2(a2-9)(1+k2),a2k2+(a2-9))+9=0,
将其整理为k2=eq \f(a4-18a2+81,-a4+18a2)=-1-eq \f(81,a4-18a2).
因为eq \f(\r(2),2)
[综合题组练]
1.设椭圆:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右顶点为A,右焦点为F,B为椭圆在第二象限内的点,直线BO交椭圆于点C,O为原点,若直线BF平分线段AC,则椭圆的离心率为( )
A.eq \f(1,2) B.eq \f(1,3)
C.eq \f(1,4) D.eq \f(1,5)
解析:选B.
如图,设点M为AC的中点,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB,且eq \f(|OF|,|FA|)=eq \f(|OM|,|AB|)=eq \f(1,2),即eq \f(c,a-c)=eq \f(1,2),解得e=eq \f(c,a)=eq \f(1,3).故选B.
2.(2020·福建福州一模)已知F1,F2为椭圆eq \f(x2,4)+y2=1的左、右焦点,P是椭圆上异于顶点的任意一点,K点是△F1PF2内切圆的圆心,过F1作F1M⊥PK于点M,O是坐标原点,则|OM|的取值范围为( )
A.(0,1) B.(0,eq \r(2))
C.(0,eq \r(3)) D.(0,2eq \r(3))
解析:选C.如图,延长PF2,F1M相交于N点,
因为K点是△F1PF2内切圆的圆心,所以PK平分∠F1PF2,
因为F1M⊥PK,
所以|PN|=|PF1|,M为F1N的中点,
因为O为F1F2的中点,M为F1N的中点,
所以|OM|=eq \f(1,2)|F2N|=eq \f(1,2)||PN|-|PF2||=eq \f(1,2)||PF1|-|PF2||
故选C.
3.已知F1,F2为椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点,过原点O且倾斜角为30°的直线l与椭圆C的一个交点为A,若AF1⊥AF2,S△F1AF2=2,则椭圆C的方程为________.
解析:因为点A在椭圆上,所以|AF1|+|AF2|=2a,对其平方,得|AF1|2+|AF2|2+2|AF1||AF2|=4a2,又AF1⊥AF2,所以|AF1|2+|AF2|2=4c2,则2|AF1||AF2|=4a2-4c2=4b2,即|AF1||AF2|=2b2,所以S△F1AF2=eq \f(1,2)|AF1||AF2|=b2=2.又△AF1F2是直角三角形,∠F1AF2=90°,且O为F1F2的中点,所以|OA|=eq \f(1,2)|F1F2|=c,由已知不妨设A在第一象限,则∠AOF2=30°,所以Aeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)c,\f(1,2)c)),则S△AF1F2=eq \f(1,2)|F1F2|·eq \f(1,2)c=eq \f(1,2)c2=2,c2=4,故a2=b2+c2=6,所以椭圆方程为eq \f(x2,6)+eq \f(y2,2)=1.
答案:eq \f(x2,6)+eq \f(y2,2)=1
4.正方形ABCD的四个顶点都在椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是________.
解析:设正方形的边长为2m,因为椭圆的焦点在正方形的内部,所以m>c,又正方形ABCD的四个顶点都在椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上,所以eq \f(m2,a2)+eq \f(m2,b2)=1>eq \f(c2,a2)+eq \f(c2,b2)=e2+eq \f(e2,1-e2),整理得e4-3e2+1>0,e2
5.已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率;
(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.
解:(1)由题意,椭圆C的标准方程为eq \f(x2,4)+eq \f(y2,2)=1.
所以a2=4,b2=2,从而c2=a2-b2=2.
因此a=2,c=eq \r(2).故椭圆C的离心率e=eq \f(c,a)=eq \f(\r(2),2).
(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0,
因为OA⊥OB,所以eq \(OA,\s\up6(→))·eq \(OB,\s\up6(→))=0,
即tx0+2y0=0,解得t=-eq \f(2y0,x0).
又xeq \\al(2,0)+2yeq \\al(2,0)=4,
所以|AB|2=(x0-t)2+(y0-2)2=eq \b\lc\(\rc\)(\a\vs4\al\c1(x0+\f(2y0,x0)))eq \s\up12(2)+(y0-2)2
=xeq \\al(2,0)+yeq \\al(2,0)+eq \f(4yeq \\al(2,0),xeq \\al(2,0))+4=xeq \\al(2,0)+eq \f(4-xeq \\al(2,0),2)+eq \f(2(4-xeq \\al(2,0)),xeq \\al(2,0))+4
=eq \f(xeq \\al(2,0),2)+eq \f(8,xeq \\al(2,0))+4(0
所以|AB|2≥8.故线段AB长度的最小值为2eq \r(2).
6.(2020·江西八校联考)已知椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),F1,F2为其左、右焦点,B1,B2为其上、下顶点,四边形F1B1F2B2的面积为2,点P为椭圆E上任意一点,以P为圆心的圆(记为圆P)总经过坐标原点O.
(1)求椭圆E的长轴A1A2的长的最小值,并确定此时椭圆E的方程;
(2)对于(1)中确定的椭圆E,若给定圆F1:(x+1)2+y2=3,则圆P和圆F1的公共弦MN的长是不是定值?如果是,求|MN|的值;如果不是,请说明理由.
解:(1)依题意四边形F1B1F2B2的面积为2bc,
所以2bc=2.
因为|A1A2|=2a=2eq \r(b2+c2)≥2eq \r(2bc)=2eq \r(2),当且仅当b=c=1时取“=”,此时a=eq \r(2),
所以长轴A1A2的长的最小值为2eq \r(2),此时椭圆E的方程为eq \f(x2,2)+y2=1.
(2)是定值.设点P(x0,y0),则eq \f(xeq \\al(2,0),2)+yeq \\al(2,0)=1⇒yeq \\al(2,0)=1-eq \f(xeq \\al(2,0),2).
圆P的方程为(x-x0)2+(y-y0)2=xeq \\al(2,0)+yeq \\al(2,0),即x2+y2-2x0x-2y0y=0,①
圆F1的方程为(x+1)2+y2=3,即x2+y2+2x-2=0,②
①-②得公共弦MN所在直线的方程为(x0+1)x+y0y-1=0,
所以点F1到公共弦MN所在直线的距离d=eq \f(|x0+2|,\r((x0+1)2+yeq \\al(2,0)))=eq \f(|x0+2|,\r((x0+1)2+1-\f(1,2)xeq \\al(2,0)))=eq \f(|x0+2|,\r(\f(1,2)xeq \\al(2,0)+2x0+2))=eq \r(2),
则|MN|=2eq \r(3-d2)=2,所以圆P和圆F1的公共弦MN的长为定值2.
2023届高考一轮复习讲义(理科)第九章 平面解析几何 第9讲 第1课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第九章 平面解析几何 第9讲 第1课时 高效演练分层突破学案,共6页。
2023届高考一轮复习讲义(理科)第九章 平面解析几何 第9讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第九章 平面解析几何 第9讲 高效演练分层突破学案,共4页。
2023届高考一轮复习讲义(理科)第九章 平面解析几何 第8讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第九章 平面解析几何 第8讲 高效演练分层突破学案,共9页。