|学案下载
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(理科)第六章 数列 第1讲 高效演练分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(理科)第六章 数列    第1讲 高效演练分层突破学案01
    2023届高考一轮复习讲义(理科)第六章 数列    第1讲 高效演练分层突破学案02
    2023届高考一轮复习讲义(理科)第六章 数列    第1讲 高效演练分层突破学案03
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(理科)第六章 数列 第1讲 高效演练分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(理科)第六章 数列 第1讲 高效演练分层突破学案,共6页。

    1.已知数列eq \r(5),eq \r(11),eq \r(17),eq \r(23),eq \r(29),…,则5eq \r(5)是它的( )
    A.第19项 B.第20项
    C.第21项 D.第22项
    解析:选C.数列eq \r(5),eq \r(11),eq \r(17),eq \r(23),eq \r(29),…中的各项可变形为eq \r(5),eq \r(5+6),eq \r(5+2×6),eq \r(5+3×6),eq \r(5+4×6),…,
    所以通项公式为an=eq \r(5+6(n-1))=eq \r(6n-1),
    令eq \r(6n-1)=5eq \r(5),得n=21.
    2.已知数列{an}满足:∀m,n∈N*,都有an·am=an+m,且a1=eq \f(1,2),那么a5=( )
    A.eq \f(1,32) B.eq \f(1,16) C.eq \f(1,4) D.eq \f(1,2)
    解析:选A.因为数列{an}满足:∀m,n∈N*,都有an·am=an+m,且a1=eq \f(1,2),所以a2=a1a1=eq \f(1,4),a3=a1·a2=eq \f(1,8).那么a5=a3·a2=eq \f(1,32).故选A.
    3.在数列{an}中,a1=-eq \f(1,4),an=1-eq \f(1,an-1)(n≥2,n∈N*),则a2 020的值为( )
    A.-eq \f(1,4) B.5
    C.eq \f(4,5) D.eq \f(5,4)
    解析:选A.在数列{an}中,a1=-eq \f(1,4),an=1-eq \f(1,an-1)(n≥2,n∈N*),所以a2=1-eq \f(1,-\f(1,4))=5,a3=1-eq \f(1,5)=eq \f(4,5),a4=1-eq \f(1,\f(4,5))=-eq \f(1,4),
    所以{an}是以3为周期的周期数列,所以a2 020=a673×3+1=a1=-eq \f(1,4).
    4.(2020·山西太原模拟(一))已知数列{an}的前n项和Sn满足Sn+an=2n(n∈N*),则a7=( )
    A.eq \f(7,3) B.eq \f(127,64)
    C.eq \f(321,32) D.eq \f(385,64)
    解析:选B.当n≥2时,Sn-1+an-1=2n-2,又Sn+an=2n,所以2an-an-1=2,所以2(an-2)=an-1-2,故{an-2}是首项为a1-2,公比为eq \f(1,2)的等比数列,
    又S1+a1=2,故a1=1,所以an=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(n-1)+2,故a7=2-eq \f(1,64)=eq \f(127,64),故选B.
    5.(2020·广东广州天河毕业班综合测试(一))数列{an}满足a1=1,对任意n∈N*,都有an+1=1+an+n,则eq \f(1,a1)+eq \f(1,a2)+…+eq \f(1,a99)=( )
    A.eq \f(99,98) B.2
    C.eq \f(99,50) D.eq \f(99,100)
    解析:选C.由an+1=1+an+n,得an+1-an=n+1,
    则an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+1=eq \f(n(n+1),2),
    则eq \f(1,an)=eq \f(2,n(n+1))=eq \f(2,n)-eq \f(2,n+1),
    则eq \f(1,a1)+eq \f(1,a2)+…+eq \f(1,a99)=
    2×eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,99)-\f(1,100)))))=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,100)))=eq \f(99,50).故选C.
    6.已知数列{an}的前n项和Sn=3n+1,则an=________.
    解析:当n=1时,a1=S1=3+1=4;
    当n≥2时,an=Sn-Sn-1=(3n+1)-(3n-1+1)=2·3n-1.
    当n=1时,2×31-1=2≠a1,所以an=eq \b\lc\{(\a\vs4\al\c1(4,n=1,,2·3n-1,n≥2.))
    答案:eq \b\lc\{(\a\vs4\al\c1(4,n=1,,2·3n-1,n≥2))
    7.记数列{an}的前n项和为Sn,若∀n∈N*,2Sn=an+1,则a2 018=________.
    解析:因为2Sn=an+1,
    所以2Sn-1=an-1+1(n≥2),
    所以2Sn-2Sn-1=2an=an-an-1(n≥2),
    即an=-an-1(n≥2),所以数列{an}是以2为周期的周期数列.
    又2S1=2a1=a1+1,
    所以a1=1,所以a2 018=a2=-a1=-1.
    答案:-1
    8.(2020·河南焦作第四次模拟)已知数列{an}的通项公式为an=2n,记数列{anbn}的前n项和为Sn,若eq \f(Sn-2,2n+1)+1=n,则数列{bn}的通项公式为bn=________.
    解析:因为eq \f(Sn-2,2n+1)+1=n,所以Sn=(n-1)·2n+1+2.所以当n≥2时,Sn-1=(n-2)2n+2,两式相减,得anbn=n·2n,所以bn=n;当n=1时,a1b1=2,所以b1=1.综上所述,bn=n,n∈N*.故答案为n.
    答案:n
    9.已知数列{an}中,a1=1,前n项和Sn=eq \f(n+2,3)an.
    (1)求a2,a3;
    (2)求{an}的通项公式.
    解:(1)由S2=eq \f(4,3)a2得3(a1+a2)=4a2,
    解得a2=3a1=3.
    由S3=eq \f(5,3)a3得3(a1+a2+a3)=5a3,
    解得a3=eq \f(3,2)(a1+a2)=6.
    (2)由题设知a1=1.
    当n≥2时,有an=Sn-Sn-1=eq \f(n+2,3)an-eq \f(n+1,3)an-1,
    整理得an=eq \f(n+1,n-1)an-1.
    于是
    a1=1,
    a2=eq \f(3,1)a1,
    a3=eq \f(4,2)a2,

    an-1=eq \f(n,n-2)an-2,an=eq \f(n+1,n-1)an-1.
    将以上n个等式两端分别相乘,整理得an=eq \f(n(n+1),2).
    显然,当n=1时也满足上式.
    综上可知,{an}的通项公式an=eq \f(n(n+1),2).
    10.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*.
    (1)设bn=Sn-3n,求数列{bn}的通项公式;
    (2)若an+1≥an,n∈N*,求a的取值范围.
    解:(1)依题意,Sn+1-Sn=an+1=Sn+3n,
    即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n),即bn+1=2bn,又b1=S1-3=a-3,
    所以数列{bn}的通项公式为bn=(a-3)2n-1,n∈N*.
    (2)由(1)知Sn=3n+(a-3)2n-1,n∈N*,
    于是,当n≥2时,
    an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,
    an+1-an=4×3n-1+(a-3)2n-2=2n-2eq \b\lc\[\rc\](\a\vs4\al\c1(12\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))\s\up12(n-2)+a-3)),
    当n≥2时,an+1≥an⇒12eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))eq \s\up12(n-2)+a-3≥0⇒a≥-9.
    又a2=a1+3>a1.综上,a的取值范围是[-9,3)∪(3,+∞).
    [综合题组练]
    1.(2020·安徽江淮十校第三次联考)已知数列{an}满足eq \f(an+1-an,n)=2,a1=20,则eq \f(an,n)的最小值为( )
    A.4eq \r(5) B.4eq \r(5)-1 C.8 D.9
    解析:选C.由an+1-an=2n知a2-a1=2×1,a3-a2=2×2,
    …,an-an-1=2(n-1),n≥2,
    以上各式相加得an-a1=n2-n,n≥2,所以an=n2-n+20,n≥2,
    当n=1时,a1=20符合上式,
    所以eq \f(an,n)=n+eq \f(20,n)-1,n∈N*,
    所以n≤4时eq \f(an,n)单调递减,n≥5时eq \f(an,n)单调递增,
    因为eq \f(a4,4)=eq \f(a5,5),所以eq \f(an,n)的最小值为eq \f(a4,4)=eq \f(a5,5)=8,故选C.
    2.若数列{an}满足a1·a2·a3·…·an=n2+3n+2,则数列{an}的通项公式为________.
    解析:a1·a2·a3·…·an=(n+1)(n+2),
    当n=1时,a1=6;
    当n≥2时,eq \b\lc\{(\a\vs4\al\c1(a1·a2·a3·…·an-1·an=(n+1)(n+2),,a1·a2·a3·…·an-1=n(n+1),))
    故当n≥2时,an=eq \f(n+2,n),
    所以an=eq \b\lc\{(\a\vs4\al\c1(6,n=1,,\f(n+2,n),n≥2,n∈N*.))
    答案:an=eq \b\lc\{(\a\vs4\al\c1(6,n=1,,\f(n+2,n),n≥2,n∈N*))
    3.已知数列{an}中,a1=a,a2=2-a,an+2-an=2,若数列{an}单调递增,则实数a的取值范围为________.
    解析:由an+2-an=2可知数列{an}的奇数项、偶数项分别递增,若数列{an}单调递增,则必有a2-a1=(2-a)-a>0且a2-a1=(2-a)-a<an+2-an=2,可得0<a<1,故实数a的取值范围为(0,1).
    答案:(0,1)
    4.(2020·广东湛江二模)一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为a,当a∈[2,2 019]时,符合条件的a共有________个.
    解析:由题设a=3m+2=5n+3,m,n∈N,
    则3m=5n+1,m,n∈N,
    当m=5k,n不存在;
    当m=5k+1,n不存在;
    当m=5k+2,n=3k+1,满足题意;
    当m=5k+3,n不存在;
    当m=5k+4,n不存在.
    其中k∈N.
    故2≤a=15k+8≤2 019,解-eq \f(6,15)≤k≤eq \f(2 011,15),则k=0,1,2,…,134,共135个,即符合条件的a共有135个.故答案为135.
    答案:135
    5.已知二次函数f(x)=x2-ax+a(a>0,x∈R),有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*).
    (1)求数列{an}的通项公式;
    (2)设cn=1-eq \f(4,an)(n∈N*),定义所有满足cm·cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的变号数.
    解:(1)依题意,Δ=a2-4a=0,所以a=0或a=4.
    又由a>0得a=4,所以f(x)=x2-4x+4.
    所以Sn=n2-4n+4.
    当n=1时,a1=S1=1-4+4=1;
    当n≥2时,an=Sn-Sn-1=2n-5.
    所以an=eq \b\lc\{(\a\vs4\al\c1(1,n=1,,2n-5,n≥2.))
    (2)由题意得cn=eq \b\lc\{(\a\vs4\al\c1(-3,n=1,,1-\f(4,2n-5),n≥2.))
    由cn=1-eq \f(4,2n-5)可知,当n≥5时,恒有cn>0.
    又c1=-3,c2=5,c3=-3,c4=-eq \f(1,3),c5=eq \f(1,5),c6=eq \f(3,7),
    即c1·c2<0,c2·c3<0,c4·c5<0.
    所以数列{cn}的变号数为3.
    相关学案

    2023届高考一轮复习讲义(理科)第六章 数列 第3讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第六章 数列 第3讲 高效演练分层突破学案,共6页。

    2023届高考一轮复习讲义(理科)第七章 不等式 第1讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第七章 不等式 第1讲 高效演练分层突破学案,共5页。

    2023届高考一轮复习讲义(理科)第六章 数列 第2讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第六章 数列 第2讲 高效演练分层突破学案,共6页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届高考一轮复习讲义(理科)第六章 数列 第1讲 高效演练分层突破学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map