2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第3讲 二次函数与幂函数学案
展开一、知识梳理
1.幂函数
(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=xeq \s\up6(\f(1,2)),y=x-1.
(2)性质
①幂函数在(0,+∞)上都有定义;
②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;
③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
2.二次函数
(1)二次函数解析式的三种形式
①一般式:f(x)=ax2+bx+c(a≠0);
②顶点式:f(x)=a(x-m)2+n(a≠0);
③零点式:f(x)=a(x-x1)(x-x2)(a≠0).
(2)二次函数的图象和性质
常用结论
1.巧识幂函数的图象和性质
2.记牢一元二次不等式恒成立的条件
(1)ax2+bx+c>0(a≠0)恒成立的充要条件是eq \b\lc\{(\a\vs4\al\c1(a>0,,b2-4ac<0.))
(2)ax2+bx+c<0(a≠0)恒成立的充要条件是eq \b\lc\{(\a\vs4\al\c1(a<0,,b2-4ac<0.))
二、习题改编
1.(必修1P79习题T1改编)已知幂函数f(x)=k·xα的图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),\f(\r(2),2))),则k+α=( )
A.eq \f(1,2) B.1
C.eq \f(3,2) D.2
解析:选C.因为f(x)=k·xα是幂函数,所以k=1.又f(x)的图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),\f(\r(2),2))),所以eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(α)=eq \f(\r(2),2),所以α=eq \f(1,2),所以k+α=1+eq \f(1,2)=eq \f(3,2).故选C.
2.(必修1P39B组T1改编)函数y=2x2-6x+3,x∈[-1,1],则y的最小值为 .
解析:函数y=2x2-6x+3=2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,2)))eq \s\up12(2)-eq \f(3,2)的图象的对称轴为直线x=eq \f(3,2)>1,所以函数y=2x2-6x+3在[-1,1]上单调递减,所以ymin=2-6+3=-1.
答案:-1
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)函数y=2xeq \s\up6(\f(1,3))是幂函数.( )
(2)当n>0时,幂函数y=xn在(0,+∞)上是增函数.( )
(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.( )
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( )
(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是eq \f(4ac-b2,4a).( )
答案:(1)× (2)√ (3)× (4)√ (5)×
二、易错纠偏
eq \a\vs4\al(常见误区)(1)幂函数定义不清晰,导致出错;
(2)二次函数的性质理解不到位出错;
(3)忽视对二次函数的二次项系数的讨论出错.
1.已知幂函数y=f(x)的图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(\r(2),2))),则此函数的解析式为 ;在区间 上递减.
解析:设y=f(x)=xα,因为图象过点eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(\r(2),2))),代入解析式得α=-eq \f(1,2),则y=x-eq \s\up6(\f(1,2)),
由性质可知函数y=x-eq \s\up6(\f(1,2))在(0,+∞)上递减.
答案:y=x-eq \s\up6(\f(1,2)) (0,+∞)
2.已知函数f(x)=x2+2ax+3,若y=f(x)在区间[-4,6]上是单调函数,则实数a的取值范围为 .
解析:由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.
答案:(-∞,-6]∪[4,+∞)
3.已知函数f(x)=ax2+x+5的图象在x轴上方,则a的取值范围是 .
解析:因为函数f(x)=ax2+x+5的图象在x轴上方,所以eq \b\lc\{(\a\vs4\al\c1(a>0,,Δ=12-20a<0,))解得a>eq \f(1,20).
答案:eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,20),+∞))
幂函数的图象及性质(典例迁移)
(1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是( )
(2)已知幂函数y=xm2-2m-3(m∈N*)的图象与x轴、y轴没有交点,且关于y轴对称,则m的所有可能取值为 .
【解析】 (1)设幂函数的解析式为y=xα,
因为幂函数y=f(x)的图象过点(4,2),
所以2=4α,解得α=eq \f(1,2),
所以y=eq \r(x),其定义域为[0,+∞),且是增函数,
当0
【答案】 (1)C (2)1,3
【迁移探究1】 (变条件)若本例(2)中 ,将函数“f(x)=x m2-2m-3”变为“f(x)=(m2+2m-2)x m2-3m ”,其他条件不变,则m的值为 .
解析:由于f(x)为幂函数,所以m2+2m-2=1,
解得m=1或m=-3,经检验只有m=1适合题意,所以m=1.
答案:1
【迁移探究2】 (变条件)本例(2)中f(x)不变,m∈N*.若函数的图象关于y轴对称,且在(0,+∞)上是减函数,则m的值为 .
解析:因为f(x)在(0,+∞)上是减函数,
所以m2-2m-3<0,解得-1
由于f(x)的图象关于y轴对称.
所以m2-2m-3为偶数,
又当m=2时,m2-2m-3为奇数,所以m=2舍去,
因此m=1.
答案:1
eq \a\vs4\al()
幂函数的图象与性质问题的解题策略
(1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.
(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.
(3)在解决幂函数与其他函数的图象的交点个数、对应方程根的个数及近似解等问题时,常用数形结合的思想方法,即在同一坐标系下画出两函数的图象,数形结合求解.
1.已知点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3),\r(3)))在幂函数f(x)的图象上,则f(x)是( )
A.奇函数 B.偶函数
C.定义域内的减函数 D.定义域内的增函数
解析:选A.设f(x)=xα,由已知得eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3)))eq \s\up12(α)=eq \r(3),
解得α=-1,
因此f(x)=x-1,易知该函数为奇函数.
2.已知a=3eq \s\up6(\f(4,5)),b=4eq \s\up6(\f(2,5)),c=12eq \s\up6(\f(1,5)),则a,b,c的大小关系为( )
A.bC.c解析:选C.因为a=81eq \s\up6(\f(1,5)),b=16eq \s\up6(\f(1,5)),c=12eq \s\up6(\f(1,5)),由幂函数y=xeq \s\up6(\f(1,5))在(0,+∞)上为增函数,知a>b>c,故选C.
3.若(a+1)eq \s\up6(\f(1,2))<(3-2a)eq \s\up6(\f(1,2)),则实数a的取值范围是 .
解析:易知函数y=xeq \s\up6(\f(1,2))的定义域为[0,+∞),在定义域内为增函数,
所以eq \b\lc\{(\a\vs4\al\c1(a+1≥0,,3-2a≥0,,a+1<3-2a,))解得-1≤a
求二次函数的解析式(师生共研)
(一题多解)已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.
【解】 法一(利用一般式):
设f(x)=ax2+bx+c(a≠0).由题意得eq \b\lc\{(\a\vs4\al\c1(4a+2b+c=-1,,a-b+c=-1,,\f(4ac-b2,4a)=8,))
解得eq \b\lc\{(\a\vs4\al\c1(a=-4,,b=4,,c=7.))所以所求二次函数的解析式为f(x)=-4x2+4x+7.
法二(利用顶点式):
设f(x)=a(x-m)2+n(a≠0).因为f(2)=f(-1),f(-1)=-1,所以抛物线的对称轴为x=eq \f(2+(-1),2)=eq \f(1,2).所以m=eq \f(1,2).又根据题意函数有最大值8,所以n=8,所以f(x)=aeq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2)))eq \s\up12(2)+8.因为f(2)=-1,所以aeq \b\lc\(\rc\)(\a\vs4\al\c1(2-\f(1,2)))eq \s\up12(2)+8=-1,解得a=-4,所以f(x)=-4eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2)))eq \s\up12(2)+8=-4x2+4x+7.
法三(利用零点式):
由已知得f(x)+1=0的两根为x1=2,x2=-1,
故可设f(x)+1=a(x-2)(x+1),
即f(x)=ax2-ax-2a-1.
又函数有最大值8,即eq \f(4a(-2a-1)-a2,4a)=8.
解得a=-4或a=0(舍去),
所以所求函数的解析式为f(x)=-4x2+4x+7.
eq \a\vs4\al()
求二次函数解析式的方法
根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:
1.已知二次函数f(x)=ax2+bx+5的图象过点P(-1,11),且其对称轴是直线x=1,则a+b的值是( )
A.-2 B.0
C.1 D.2
解析:选A.因为二次函数f(x)=ax2+bx+5的图象的对称轴是直线x=1,所以-eq \f(b,2a)=1 ①.又f(-1)=a-b+5=11,所以a-b=6 ②.联立①②,解得a=2,b=-4,所以a+b=-2,故选A.
2.已知二次函数f(x)有两个零点0和-2,且它有最小值-1,则f(x)的解析式为f(x)= .
解析:由二次函数f(x)有两个零点0和-2,可设f(x)=a(x+2)x,则f(x)=a(x2+2x)=a(x+1)2-a.
又f(x)有最小值-1,则a=1.所以f(x)=x2+2x.
答案:x2+2x
二次函数的图象与性质(多维探究)
角度一 二次函数图象的识别问题
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a
C.②③ D.①③
【解析】 因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-eq \f(b,2a)=-1,2a-b=0,②错误;结合图象,当x=-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a【答案】 B
eq \a\vs4\al()
确定二次函数图象应关注的三个要点
一是看二次项系数的符号,它确定二次函数图象的开口方向.
二是看对称轴和最值,它确定二次函数图象的具体位置.
三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.
从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.
角度二 二次函数的单调性及最值问题
(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a的取值范围是 .
(2)求函数f(x)=x2+2ax+1在区间[-1,2]上的最大值.
【解】 (1)当a=0时,f(x)=-3x+1在[-1,+∞)上递减,满足条件.
当a≠0时,f(x)的对称轴为x=eq \f(3-a,2a),
由f(x)在[-1,+∞)上递减知eq \b\lc\{(\a\vs4\al\c1(a<0,\f(3-a,2a)≤-1,))
解得-3≤a<0.综上,a的取值范围为[-3,0].故填[-3,0].
(2)f(x)=(x+a)2+1-a2,
所以f(x)的图象是开口向上的抛物线,对称轴为x=-a.
①当-a
②当-a≥eq \f(1,2)即a≤-eq \f(1,2)时,f(x)max=f(-1)=2-2a,
综上,f(x)max=eq \b\lc\{(\a\vs4\al\c1(4a+5,a>-\f(1,2),,2-2a,a≤-\f(1,2).))
eq \a\vs4\al()
二次函数的单调性及最值问题
(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.
(2)解决这类问题的思路:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.
角度三 一元二次不等式恒成立问题
(1)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是 .
(2)已知函数f(x)=x2+2x+1,f(x)>x+k在区间[-3,-1]上恒成立,则k的取值范围为 .
【解析】 (1)作出二次函数f(x)的草图,对于任意x∈[m,m+1],都有f(x)<0,
则有eq \b\lc\{(\a\vs4\al\c1(f(m)<0,,f(m+1)<0,))
即eq \b\lc\{(\a\vs4\al\c1(m2+m2-1<0,,(m+1)2+m(m+1)-1<0,))解得-eq \f(\r(2),2)
设g(x)=x2+x+1,x∈[-3,-1],则g(x)在[-3,-1]上递减.
所以g(x)min=g(-1)=1.
所以k<1.故k的取值范围为(-∞,1).
【答案】 (1)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(2),2),0)) (2)(-∞,1)
eq \a\vs4\al()
不等式恒成立求参数取值范围的思路
一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.
1.函数f(x)=ax2-2x+3在区间[1,3]上为增函数的充要条件是( )
A.a=0 B.a<0
C.0解析:选D.当a=0时,f(x)为减函数,不符合题意;当a≠0时,函数f(x)=ax2-2x+3图象的对称轴为x=eq \f(1,a),要使f(x)在区间[1,3]上为增函数,则eq \b\lc\{(\a\vs4\al\c1(a<0,,\f(1,a)≥3))或eq \b\lc\{(\a\vs4\al\c1(a>0,,\f(1,a)≤1,))解得a≥1.故选D.
2.如果函数f(x)=x2+bx+c对任意的实数x都有f(1+x)=f(-x),那么( )
A.f(0)
3.若函数f(x)=x2-2x+1在区间[a,a+2]上的最小值为4,则a的取值集合为 .
解析:因为函数f(x)=x2-2x+1=(x-1)2,对称轴x=1,
因为f(x)在区间[a,a+2]上的最小值为4,
所以当1≤a时,f(x)min=f(a)=(a-1)2=4,解得a=-1(舍去)或a=3,
当a+2≤1,即a≤-1时,f(x)min=f(a+2)=(a+1)2=4,解得a=1(舍去)或a=-3,
当a<1故a的取值集合为eq \b\lc\{\rc\}(\a\vs4\al\c1(-3,3)).
答案:eq \b\lc\{\rc\}(\a\vs4\al\c1(-3,3))
思想方法系列2 分类讨论思想在二次函数问题中的应用
已知函数f(x)=x2-2tx+1在区间[2,5]上单调且有最大值为8,则实数t的值为 .
【解析】 函数f(x)=x2-2tx+1图象的对称轴是x=t,
函数在区间[2,5]上单调,故t≤2或t≥5.
若t≤2,则函数f(x)在区间[2,5]上是增函数,
故f(x)max=f(5)=25-10t+1=8,解得t=eq \f(9,5);
若t≥5,则函数f(x)在区间[2,5]上是减函数,
此时f(x)max=f(2)=4-4t+1=8,
解得t=-eq \f(3,4),与t≥5矛盾.综上所述,t=eq \f(9,5).
【答案】 eq \f(9,5)
eq \a\vs4\al()
二次函数是单峰函数(在定义域上只有一个最值点的函数),x=-eq \f(b,2a)为其最值点横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系、二次函数开口方向进行分类讨论,研究其最值.
已知函数f(x)=ax2+2ax+1在区间[-1,2]上有最大值4,求实数a的值.
解:f(x)=a(x+1)2+1-a.
(1)当a=0时,函数f(x)在区间[-1,2]上的值为常数1,不符合题意,舍去;
(2)当a>0时,函数f(x)在区间[-1,2]上是增函数,最大值为f(2)=8a+1=4,解得a=eq \f(3,8);
(3)当a<0时,函数f(x)在区间[-1,2]上是减函数,最大值为f(-1)=1-a=4,解得a=-3.
综上可知,a的值为eq \f(3,8)或-3.
[基础题组练]
1.如图是①y=xa;②y=xb;③y=xc在第一象限的图象,则a,b,c的大小关系为( )
A.cC.b
2.(2020·辽宁第一次联考)设函数f(x)=xeq \s\up6(\f(2,3)),若f(a)>f(b),则( )
A.a2>b2 B.a2
解析:选A.函数f(x)=xeq \s\up6(\f(2,3))=(x2)eq \s\up6(\f(1,3)),令t=x2,易知y=teq \s\up6(\f(1,3)),在第一象限为单调递增函数.
又f(a)>f(b),所以a2>b2.故选A.
3.若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( )
A.在(-∞,2)上递减,在[2,+∞)上递增
B.在(-∞,3)上递增
C.在[1,3]上递增
D.单调性不能确定
解析:选A.由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2)上是递减的,在[2,+∞)上是递增的.
4.若a=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up6(\f(2,3)),b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)))eq \s\up6(\f(2,3)),c=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up6(\f(1,3)),则a,b,c的大小关系是( )
A.aC.b
A.[0,4] B.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),4))
C.eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),+∞)) D.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),3))
解析:选D.二次函数图象的对称轴为x=eq \f(3,2),且feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=-eq \f(25,4),f(3)=f(0)=-4,结合函数图象(如图所示)可得m∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),3)).
6.(2020·甘肃兰州一中月考)已知函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x∈(0,+∞)上递减,则实数m= .
解析:根据幂函数的定义和性质,得m2-m-1=1.
解得m=2或m=-1,
当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;
当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,
所以m=2.
答案:2
7.设函数f(x)=mx2-mx-1,若对于x∈R,f(x)<0恒成立,则实数m的取值范围是 .
解析:当m=0时,f(x)=-1<0,符合题意.当m≠0时,f(x)为二次函数,则由f(x)<0恒成立得eq \b\lc\{(\a\vs4\al\c1(m<0,,Δ<0,))即eq \b\lc\{(\a\vs4\al\c1(m<0,,(-m)2-4m×(-1)<0,))解得-4
答案:(-4,0]
8.(2020·重庆(区县)调研测试)已知函数f(x)=-2x2+mx+3(0≤m≤4,0≤x≤1)的最大值为4,则m的值为 .
解析:f(x)=-2x2+mx+3=-2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(m,4)))eq \s\up12(2)+eq \f(m2,8)+3,
因为0≤m≤4,所以0≤eq \f(m,4)≤1,
所以当x=eq \f(m,4)时,f(x)取得最大值,
所以eq \f(m2,8)+3=4,解得m=2eq \r(2).
答案:2eq \r(2)
9.已知函数f(x)=x2+2ax+2,x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-5,5)).
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
解:(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x∈[-5,5],
所以当x=1时,f(x)取得最小值1;
当x=-5时,f(x)取得最大值37.
(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为直线x=-a,
因为y=f(x)在区间[-5,5]上是单调函数,
所以-a≤-5或-a≥5,即a≤-5或a≥5.故实数a的取值范围是(-∞,-5]∪[5,+∞).
10.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
解:(1)由f(0)=1,得c=1,所以f(x)=ax2+bx+1.
又f(x+1)-f(x)=2x,
所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,
所以eq \b\lc\{(\a\vs4\al\c1(2a=2,,a+b=0,))所以eq \b\lc\{(\a\vs4\al\c1(a=1,,b=-1,))
因此,所求解析式为f(x)=x2-x+1.
(2)f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在区间[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在区间[-1,1]上的最小值大于0即可.
设g(x)=x2-3x+1-m,
则g(x)在区间[-1,1]上单调递减,
所以g(x)min=g(1)=-m-1,
由-m-1>0,得m<-1.
因此满足条件的实数m的取值范围是(-∞,-1).
[综合题组练]
1.(2020·福建连城一模)已知函数f(x)=2ax2-ax+1(a<0),若x1
C.f(x1)
所以eq \f(f(1)-f(-1),1-(-1))=m=f(x0),
即关于x0的方程-xeq \\al(2,0)+mx0+1=m在(-1,1)内有实数根,
解方程得x0=1或x0=m-1.
所以必有-1
答案:(0,2)
3.(2020·辽宁第一次联考)已知幂函数f(x)=(m-1)2xm2-4m+3(m∈R)在(0,+∞)上单调递增.
(1)求m的值及f(x)的解析式;
(2)若函数g(x)=-eq \r(3,f(x)2)+2ax+1-a在[0,2]上的最大值为3,求实数a的值.
解:(1)幂函数f(x)=(m-1)2x m2-4m+3 (m∈R)在(0,+∞)上单调递增,
故eq \b\lc\{(\a\vs4\al\c1((m-1)2=1,,m2-4m+3>0,))解得m=0,故f(x)=x3.
(2)由f(x)=x3,得g(x)=-eq \r(3,f(x)2)+2ax+1-a=-x2+2ax+1-a,
函数图象为开口方向向下的抛物线,对称轴为x=a.
因为在[0,2]上的最大值为3,所以
①当a≥2时,g(x)在[0,2]上单调递增,故g(x)max=g(2)=3a-3=3,解得a=2.
②当a≤0时,g(x)在[0,2]上单调递减,故g(x)max=g(0)=1-a=3,解得a=-2.
③当0综上所述,a=±2.
4.已知函数f(x)=x2-2ax+5(a>1).
(1)若函数f(x)的定义域和值域均为[1,a],求实数a的值;
(2)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.
解:(1)因为f(x)=x2-2ax+5在(-∞,a]上为减函数,
所以f(x)=x2-2ax+5(a>1)在[1,a]上单调递减,
即f(x)max=f(1)=a,f(x)min=f(a)=1,所以a=2或a=-2(舍去).即实数a的值为2.
(2)因为f(x)在(-∞,2]上是减函数,所以a≥2.
所以f(x)在[1,a]上单调递减,在[a,a+1]上单调递增,
又函数f(x)的对称轴为直线x=a,所以f(x)min=f(a)=5-a2,f(x)max=max{f(1),f(a+1)},
又f(1)-f(a+1)=6-2a-(6-a2)=a(a-2)≥0,
所以f(x)max=f(1)=6-2a.
因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,
所以f(x)max-f(x)min≤4,即6-2a-(5-a2)≤4,解得-1≤a≤3.又a≥2,所以2≤a≤3.即实数a的取值范围为2≤a≤3.
解析式
f(x)=ax2+bx
+c(a>0)
f(x)=ax2+bx
+c(a<0)
图象
定义域
(-∞,+∞)
(-∞,+∞)
值域
eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(4ac-b2,4a),+∞))
eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(4ac-b2,4a)))
单调性
在eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(b,2a)))上单调递减;
在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上单调递增
在eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(b,2a)))上单调递增;
在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上单调递减
奇偶性
当b=0时为偶函数,当b≠0时为非奇非偶函数
顶点
eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(b,2a),\f(4ac-b2,4a)))
对称性
图象关于直线x=-eq \f(b,2a)成轴对称图形
2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数学案文: 这是一份2022高考数学一轮总复习第二章函数概念与基本初等函数第5讲二次函数与幂函数学案文,共11页。学案主要包含了思考辨析,易错纠偏等内容,欢迎下载使用。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第8讲 函数与方程学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第8讲 函数与方程学案,共13页。学案主要包含了知识梳理,习题改编,利用图形求解不等式中的参数范围,利用图形研究零点问题等内容,欢迎下载使用。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第2讲 第3课时 函数性质的综合问题学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第2讲 第3课时 函数性质的综合问题学案,共11页。