所属成套资源:2022年高考数学(文数)二轮复习选择填空狂练(含答案详解版+原卷版)
2022年高考数学(文数)二轮复习选择填空狂练11《圆锥曲线》(含答案详解)
展开
这是一份2022年高考数学(文数)二轮复习选择填空狂练11《圆锥曲线》(含答案详解),共8页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
11 圆锥曲线 1.设椭圆的焦点与抛物线的焦点相同,离心率为,则( )A. B. C. D.2.已知双曲线的离心率,则双曲线的渐近线方程为( )A. B. C. D.3.已知、是椭圆:的两个焦点,为椭圆上一点,且,若的面积为9,则的值为( )A.1 B.2 C.3 D.44.如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若点是的中点,且,则线段的长为( )A.5 B.6 C. D.5.设双曲线的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为( )A.2 B. C. D.4 6.关于,的方程,表示的图形不可能是( )A. B.C. D.7.若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为( )A. B. C. D.8.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则( )A.4 B.6 C.8 D.109.已知直线与双曲线交于,两点,且线段的中点的横坐标为1,则该双曲线的离心率为( )A. B. C. D.10.已知双曲线的右焦点为,左顶点为.以为圆心,为半径的圆交的右支于,两点,的一个内角为,则的离心率为( )A. B. C. D.11.在平面直角坐标系中,点为椭圆的下顶点,,在椭圆上,若四边形为平行四边形,为直线的倾斜角,若,则椭圆的离心率的取值范围为( )A. B. C. D.12.已知椭圆,点,是长轴的两个端点,若椭圆上存在点,使得,则该椭圆的离心率的最小值为( )A. B. C. D. 13.过点且和双曲线有相同的渐近线的双曲线方程为__________.14.一个椭圆中心在原点,焦点,在轴上,是椭圆上一点,且,,成等差数列,则椭圆方程为__________.15.已知椭圆的左、右焦点为、,点关于直线的对称点仍在椭圆上,则的周长为__________.16.已知抛物线的焦点为,准线为,过点斜率为的直线与抛物线交于点(在轴的上方),过作于点,连接交抛物线于点,则_______. 1.【答案】A【解析】抛物线的焦点为,∴椭圆的焦点在轴上,∴,
由离心率,可得,∴,故.故选A.2.【答案】D【解析】双曲线的离心率,,,,故渐近线方程为,故答案为D.3.【答案】C【解析】、是椭圆的两个焦点,为椭圆上一点,可得,,,,,,,故选C.方法二:利用椭圆性质可得,.4.【答案】C【解析】设、在准线上的射影分别为为、,准线与横轴交于点,则,由于点是的中点,,∴,∴,设,则,即,解得,,故答案为C.5.【答案】B【解析】∵双曲线的两条渐近线互相垂直,∴渐近线方程为,∴.∵顶点到一条渐近线的距离为1,∴,∴,∴双曲线的方程为,焦点坐标为,,∴双曲线的一个焦点到一条渐近线的距离为,故选B.6.【答案】D【解析】因为,所以,所以当时,表示A;当时,表示B;当时,表示C;故选D.7.【答案】D【解析】如图,已知,可知焦点,准线:,过点作准线的垂线,与抛物线交于点,作根据抛物线的定义,可知,取最小值,已知,可知的纵坐标为2,代入中,得的横坐标为2,即,故选D.8.【答案】B【解析】抛物线的焦点,是上一点的延长线交轴于点.若为的中点,可知的横坐标为1,则的纵坐标为,,故选B.9.【答案】B【解析】因为直线与双曲线交于,两点,且线段的中点的横坐标为1,所以,设,,则有,,,,,两式相减可化为,,可得,,,双曲线的离心率为,故选B.10.【答案】C【解析】如图,设左焦点为,设圆与轴的另一个交点为,∵的一个内角为,∴,,在中,由余弦定理可得,,故答案为C.11.【答案】A【解析】因为是平行四边形,因此且,故,代入椭圆方程可得,所以.因,所以,即,所以,即,解得,故选A.12.【答案】C【解析】设为椭圆短轴一端点,则由题意得,即,因为,所以,,,,,,故选C. 13.【答案】【解析】设双曲线方程为,双曲线过点,则,故双曲线方程为,即.14.【答案】【解析】∵个椭圆中心在原点,焦点,在轴上,∴设椭圆方程为,∵是椭圆上一点,且,,成等差数列,∴,且,解得,,,∴椭圆方程为,故答案为.15.【答案】【解析】设,,关于直线的对称点坐标为,点在椭圆上,则,则,,则,故的周长为.16.【答案】2【解析】由抛物线定义可得,又斜率为的直线倾斜角为,,所以,即三角形为正三角形,因此倾斜角为,由,解得或(舍),即,.
相关试卷
这是一份2022年高考数学(文数)二轮复习选择填空狂练11《圆锥曲线》(原卷版),共3页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2022年高考数学(文数)二轮复习选择填空狂练09《立体几何》(含答案详解),共10页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2022年高考数学(文数)二轮复习选择填空狂练03《框图》(含答案详解),共10页。