|试卷下载
搜索
    上传资料 赚现金
    湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案
    立即下载
    加入资料篮
    湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案01
    湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案02
    湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案03
    还剩14页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案

    展开
    这是一份湖南省湘潭市2022届高三上学期9月第一次模拟考试数学试题 Word版含答案,共17页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    湘潭市2022届高三第一次模拟考试

    数学

    一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.

    1.已知集合,则   

    A B C D

    2.已知为虚数单位,复数,则复数对应的复平面上的点位于(   

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

    3.如图,在直四棱柱中,下列结论正确的是(   

    A是两条相交直线

    B平面

    C

    D四点共面

    4.我国古代数学名著《算法统宗》是明代数学家程大位(1533-1606年)所著.程少年时,读书极为广博,对书法和数学颇感兴趣.20岁起便在长江中下游一带经商,因商业计算的需要,他随时留心数学,遍访名师,搜集很多数学书籍,刻苦钻研,时有心得,终于在他60岁时,完成了《算法统宗》这本著作.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"根据诗词的意思,可得塔的最底层共有灯(   

    A192 B128 C3 D1

    5.已知函数,则(   

    A的周期为

    B.将的图象向左平移个单位,得到的图象对应的函数解析式为

    C的图象关于点对称

    D的图象关于直线对称

    6.已知抛物线)的焦点为,点上,且,若点的坐标为,且,则的方程为(   

    A B

    C D

    7.某地区公共卫生部门为了了解本地区中学生的吸烟情况,对随机抽出的200名学生进行了调查.调查中使用了下面两个问题:

    问题一:你的父亲阳历生日日期是不是奇数?

    问题二:你是否经常吸烟?

    调查者设计了一个随机化装置:一个装有大小、形状和质量完全一样的50个白球和50个红球的袋子,每个被调查者随机从袋子中摸取1个球(摸出的球再放回袋子中),摸到白球的学生如实回答第一个问题,摸到红球的学生如实回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么都不要做,如果一年按365天计算,且最后盒子中有60个小石子,则可以估计出该地区中学生吸烟人数的百分比为(   

    A7% B8% C9% D30%

    8.已知定义域为的函数的导函数为,且,若实数,则下列不等式恒成立的是(   

    A B

    C D

    二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.

    9.已知向量,且的夹角为,则(   

    A B C D

    10.已知随机变量服从正态分布,则(   

    A的数学期望为 B的方差为

    C  D

    11.若,则(   

    A B C D

    12.已知双曲线)的左,右焦点为,右顶点为,则下列结论中,正确的有(   

    A.若,则的离心率为

    B.若以为圆心,为半径作圆,则圆的渐近线相切

    C.若上不与顶点重合的一点,则的内切圆圆心的横坐标

    D.若为直线上纵坐标不为0的一点,则当的纵坐标为时,外接圆的面积最小

    三、填空题:本题共4小题,每小题5分,共20分.

    13.已知角的终边经过点,则______

    14.已知定义域为的偶函数上单调递减,且2是函数的一个零点,则不等式的解集为______

    15.已知某正方体外接球的表面积为,则该正方体的棱长为______

    16.用实数1)表示命题的真假,其中表示命题为假,表示命题为真.设命题).

    1)当时,______;(2)当时,实数的取值范围为______

    四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.

    17.(本小题满分10分)

    已知为数列的前项和,且,(为常数),若.求:

    1)数列的通项公式;

    2的最值.

    18.(本小题满分12分)

    在锐角中,角的对边分别为,若

    1)求的值;

    2)是否存在角),满足?若存在,求出的值;若不存在,请说明理由.

    19.(本小题满分12分)

    某学校举行“英语风采”大赛,有30名学生参加决赛,评委对这30名同学分别从“口语表达”和“演讲内容”两项进行评分,每项评分均采用10分制,两项均为6分起评,两项分数之和为该参赛学生的最后得分,若设“口语表达”得分为,“演讲内容”得分为,比赛结束后,统计结果如下表:

    得分人数

    演讲人数

    6

    7

    8

    9

    10

    口语表达

    6

    1

    1

    0

    0

    0

    7

    3

    2

    1

    2

    0

    8

    1

    2

    3

    1

    0

    9

    1

    2

    1

    1

    10

    0

    0

    1

    1

    1)从这30名学生中随机抽取1人,求这名学生的最后得分为15分的概率;

    2)若“口语表达”得分的数学期望为.求:

    的值;

    ②这30名参赛学生最后得分的数学期望.

    20.(本小题满分12分)

    如图,在三棱锥中,底面

    1)求证:平面平面

    2)若二面角的大小为,过点,求直线与平面所成角的大小.

    21.(本小题满分12分)

    已知圆锥曲线上的点的坐标满足

    1)说明是什么图形,并写出其标准方程;

    2)若斜率为1的直线交于轴右侧不同的两点,点

    ①求直线轴上的截距的取值范围;

    ②求证:的平分线总垂直于轴.

    22.(本小题满分12分)

    已知为自然对数的底数,函数).

    1)若,且的图象与的图象相切,求的值;

    2)若对任意的恒成立,求的最大值.

    湘潭市2022届高三第一次模拟考试·数学

    参考答案、提示及评分细则

    1.【命题意图】本题重点考查元素与集合的关系,集合的运算,指数函数的性质等数学基础知识,属容易题.

    【答案】C

    【解析】因为,所以.故选:C

    2.【命题意图】本题重点考查复数的几何意义,复数的运算等复数的基础知识,属容易题.

    【答案】D

    【解析】因为,所以对应的复平面上的点为,它位于第四象限.故选:D

    3.【命题意图】本题重点考查棱柱的结构特征,空间点线面的位置关系,考查学生的空间想象能力,属容易题.

    【答案】B

    【解析】因为,所以平面,所以B正确;ACD都不正确.故选:B

    4.【命题意图】本题重点考查等比数列的概念、通项公式与前和等数列的基础知识,考查学生的阅读理解能力、数学应用能力和家国情怀,属容易题.

    【答案】A

    【解析】设这个塔顶层有盏灯,则问题等价于一个首项为,公比为2的等比数列的前7项和为381,所以,解得,所以这个塔的最底层有盏灯.故选:A

    5.【命题意图】本题重点考查正弦函数的图象与性质,属容易题.

    【答案】B

    【解析】因为的周期为,它的图象关于直线和点)对称,所以ACD都不对;将的图象向左平移个单位,得到的图象对应的函数解析式为,所以B正确.故选:B

    6.【命题意图】本题重点考查直线的方程,抛物线的定义、标准方程与性质,直线与圆锥曲线的位置关系等解析几何的基础知识,考查函数与方程,转化与化归的思想,属中档题.

    【答案】A

    【解析】设,则,又,所以

    因为,所以,可得,又

    联立,消去,得,所以,故

    ,所以,即,解得,或

    所以的方程为.故选:A

    7.【命题意图】本题重点考查概率的有关知识,考查学生的阅读理解能力与数学应用意识,属中档题.

    【答案】C

    【解析】因为一个装有大小、形状和质量完全一样的50个白球和50个红球的袋子中,随机摸出1个球,摸到白球和红球的概率都为,因此,这200人中,回答了第一个问题的有100人,而一年365天中,阳历为奇数的有186天,所以对第一个问题回答“是”的概率为,所以这100个回答第一个问题的学生中,约有51人回答了“是”,从而可以估计,在回答第二个问题的100人中,约有9人回答了“是”,所以可以估计出该地区中学生吸烟人数的百分比为9%.故选:C

    8.【命题意图】本题重点考查函数与导数、不等式的有关知识,考查转化与化归的思想,考查学生的数学综合解题能力,属稍难题.

    【答案】D

    【解析】令,则,所以为增函数,

    又当时,,所以,即

    所以.故选:D

    9.【命题意图】本题重点考查平面向量的坐标运算,向量的模,向量共线的条件,数量积,向量的夹角等平面向量的基础知识,属容易题.

    【答案】BD

    【解析】对于A,因为,所以A不正确;

    对于B.因为,所以B正确;

    对于C,因为,所以C不正确;

    对于D,因为,所以D正确.故选:BD

    10.【命题意图】本题重点考查正态分布的有关概念和性质,属容易题.

    【答案】AC

    【解析】由正态分布的定义及正态曲线的性质,可知AC正确,BD不正确.故选:AC

    11.【命题意图】本题重点考查指数与对数的运算,基本不等式,比较法等数学基础知识,考查学生的估算能力,属中档题(选对A,得2分很容易).

    【答案】ACD

    【解析】由已知,有

    对于A,有,所以A正确;

    对于B,因为,且,所以,得,所以B不正确;

    对于C,因为,且,所以,所以C正确;

    对于D,因为,而

    因为,所以,故,所以D正确.故选:ACD

    12.【命题意图】本题重点考查双曲线的定义与几何性质,直线与圆的位置关系,正弦定理,三角变换及基本不等式等有关知识,考查学生的综合解题能力,属稍难题(选对A,得2分很容易).

    【答案】ABD

    【解析】对于A,因为,所以,故的离心率,所以A正确;

    对于B,因为到渐近线的距离为,所以B正确;

    对于C,由双曲线的定义,可得的内切圆圆心的横坐标,所以C不正确;

    对于D,由正弦定理,可知外接圆的半径为,所以当最大时,最小.

    因为,所以为锐角,故最大,只需最大.

    由对称性,不妨设),设直线轴的交点为

    当且仅当,即时,取最大值,

    由双曲线的对称性可知,当时,也取得最大值,所以D正确.

    故选:ABD

    13.【命题意图】本题重点考查三角函数的定义,属容易题.

    【答案】

    【解析】因为,所以

    故答案为

    14.【命题意图】本题重点考查函数的奇偶性,单调性,函数的零点,数形结合等函数的基础知识,属容易题.

    【答案】

    【解析】因为2是函数的一个零点,所以

    因为函数是偶函数,所以原不等式等价于

    又因为函数上单调递减,所以,解得

    故答案为:

    15.【命题意图】本题重点考查正方体与球的结构特征,球的表面积等立体几何的基础知识,考查学生的空间想象能力,属容易题.

    【答案】1

    【解析】设正方体的棱长为,外接球的半径为,则,又,所以,故.故答案为:1

    16.【命题意图】本题是一道新定义创新题,重点考查命题,分段函数,函数的图象与性质等函数的基础知识,考查学生的阅读理解能力及函数与方程,数形结合,转化与化归,分类与整合等数学思想方法,属稍难题(第

    1)问中档题,第(2)问稍难题).

    【答案】(10;(2.(第(1)问2分,第(2)问3分)

    【解析】(1)当时,不等式不成立,所以为假命题,故

    2)因为,所以命题为真命题,令

    ,所以当时,为减函数,当时,为增函数,要使

    成立,只需时,都成立,所以,得

    故答案为:10;(2

    17.【命题意图】本题重点考查等差数列的定义、通项公式与求和公式等数列的基础知识,考查函数与方程,分类与整合等数学思想方法,属容易题.

    【解析】(1)由,得

    ,得

    所以,或

    ,得,此时,

    ,得,此时,

    所以,或

    2)当时,,因为是关于正整数的增函数,所以的最小值,无最大值;

    时,,因为为正整数,所以当时,有最大值无最小值.

    18.【命题意图】本题重点考查正弦定理,诱导公式、同角三角函数关系与两角和的正切公式等三角函数的基础知识,考查转化与化归的数学思想和学生的探究能力,(1)属容易题,(2)属中档题.

    【解析】(1)因为

    由正弦定理,得

    又因为,所以,故

    2)假设存在角),满足

    ,可得

    因为,所以

    ,可得

    ,且,解得

    从而,故存在满足题意.

    19.【命题意图】本题重点考查概率统计的有关知识,考查学生的阅读理解能力和数据处理能力,属中档题.

    【解析】(1)因为

    所以最后得分为15的人数有,故从这30名学生中随机抽取1人,这名学生的最后得分为15分的概率为

    2)①由表可知“口语表达”得分6分、7分、8分、9分、10分,

    且每个分数分别有2人,8人,7人,人,人.

    所以“口语表达”得分的分布列为:

    6

    7

    8

    9

    10

    又“口语表达”得分的数学期望为,所以

    化简,得

    因为学生共有30人,所以

    ,解得

    ②这30名参赛学生最后得分的分布列为

    得分

    12

    13

    14

    15

    16

    17

    18

    19

    20

    所以这30名参赛学生最后得分的数学期望为

    20.【命题意图】本题重点考查空间点线面的位置关系,二面角,直线与平面所成的角等立体几何的基础知识,考查学生的空间想象能力和运算推理能力,(1)属容易题,(2)属中档题.

    【解析】(1)因为底面,所以,又

    所以,又为平面内的两条相交直线,所以平面

    因为平面,所以平面平面

    2)解法一由(1)可知,为二面角的平面角,所以

    ,所以

    过点,则平面中点,连接

    为直线与平面所成的角,

    中,

    所以

    所以直线与平面所成的角为6

    解法二建立如图所示的空间直角坐标系,则由已知,可得

    ),则

    因为

    所以

    解得,所以,故

    设平面的法向量为,因为

    ,得

    ,则

    所以为平面的一个法向量,

    所以

    故直线与平面所成的角的正弦值为,所以直线与平面所成的角为60°

    21.【命题意图】本题重点考查直线的倾斜角、斜率与方程,椭圆的定义与标准方程,直线与圆锥曲线的位置关系等解析几何的基础知识,考查坐标法,函数与方程,数形结合,转化与化归等数学思想方法,(1)属容易题,(2)属稍难题.

    【解析】(1)圆锥曲线是以为焦点,长轴长为的椭圆,

    其标准方程为

    2)①设直线

    ,消去,得

    由题意,有,解得

    所以直线轴上的截距的取值范围为

    ②因为点在椭圆上,若直线过点,即点(或点)与重合,则的另一个交点为,不合题意,所以点(或点)与不重合;

    的斜率不存在,则直线过点,此时,只有一个交点,

    所以的斜率都存在,

    设直线的斜率为,直线的斜率为,因为在轴的右侧,结合图象,可知,

    要证的平分线总垂直于轴,只要证

    因为,也即证:

    成立,

    的平分线总垂直于轴.

    22.【命题意图】本题重点考查函数的最值,导数的几何意义及导数在函数中的应用,不等式等函数、导数和不等式的基础知识,考查学生的转化与化归,分类与整合的数学思想和运用所学知识解决数学问题的综合能力,

    1)属中档题,(2)属稍难题.

    【解析】(1)因为的图象与的图象相切,设切点为

    ,所以,解得

    所以

    2)因为等价于,令

    时,上为增函数,且当时,,所以不满足题意;

    时,对任意的恒成立,所以,故,此时的最大值为0

    时,因为,由,得

    又当时,,当时,

    所以上为增函数,在上为减函数,

    所以当时,有最小值

    所以,即,所以

    ,则

    所以当时,为增函数,当时,为减函数,

    所以,故,所以的最大值为

    综上所述,的最大值为

     

     

    相关试卷

    湖南省湘潭市2023届高三上学期二模数学试题: 这是一份湖南省湘潭市2023届高三上学期二模数学试题,共11页。试卷主要包含了 本试卷主要考试内容, 已知,则等内容,欢迎下载使用。

    湖南省湘潭市2022-2023学年高三上学期入学摸底考试数学试题: 这是一份湖南省湘潭市2022-2023学年高三上学期入学摸底考试数学试题

    2023届湖南省湘潭市高三上学期入学摸底考试数学试题含答案: 这是一份2023届湖南省湘潭市高三上学期入学摸底考试数学试题含答案,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map