搜索
    上传资料 赚现金
    英语朗读宝

    《圆的方程》同步练习1 苏教版必修2教案

    《圆的方程》同步练习1 苏教版必修2教案第1页
    《圆的方程》同步练习1 苏教版必修2教案第2页
    《圆的方程》同步练习1 苏教版必修2教案第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学苏教版必修22.2.1 圆的方程教案及反思

    展开

    这是一份高中数学苏教版必修22.2.1 圆的方程教案及反思,共7页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
           新课标高一数学同步测试2.2圆与方程 本试卷分第卷和第卷两部分.150. (选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.直线xy+3=0被圆(x+22+y22=2截得的弦长等于       A   B     C2     D2.圆x2y22x6y90与圆x2y26x2y10的位置关系是      A相交 B.相外   C相离       D相内切3.过点P21)作圆Cx2+y2ax+2ay+2a+1=0的切线有两条,则a取值范围是(     Aa3                Ba3        C3a           D3aa24.设直线轴的交点为P,点P把圆的直径分为两段,   则其长度之比为         A    B      C    D5.圆关于直线对称的圆的方程是       A  B C D6.如果实数满足等式,那么的最大值是       A  B     C        D7.直线与圆交于EF两点,则O为原点)   的面积为          A      B       C     D8.已知圆的方程为,且在圆外,圆的方程为   =,则与圆一定            A.相离      B.相切    C.同心圆    D.相交9.两圆的公切线有且仅有           A1 B2 C3 D410.直线与曲线有且只有一个交点,则的取值范围是      A     B     C      D.非ABC的结论 (非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.已知实数xy满足关系:,则的最小值        12.已知两圆.求经过两圆交点的公共弦所在的直    线方程_______            ____13.过点M04)、被圆截得的线段长为的直线方程为       _       _14的位置关系是_______   _____三、解答题:解答应写出文字说明、证明过程或演算步骤(76)15.(12分)求过点P6,-4)且被圆截得长为的弦所在的直线方程.        16.(12分)已知圆C:及直线.   1)证明:不论取什么实数,直线与圆C恒相交;   2)求直线与圆C所截得的弦长的最短长度及此时直线的方程.         17.(12分)一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长30 km的圆形区域.已知港口位于台风正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?      18.(12分)已知圆x2+y2+x6y+m=0和直线x+2y3=0交于PQ两点,且以PQ为直径的    圆恰过坐标原点,求实数m的值.         19.(14分)已知圆和直线交于PQ两点,且OPOQ   O为坐标原点),求该圆的圆心坐标及半径长.             20.(14分)求圆心在直线上,且过两圆    交点的圆的方程.                    参考答案一、DCDAA  BCCBB二、111213x=015x8y32=014.内切;三、15.解:设弦所在的直线方程为 则圆心00到此直线的距离为因为圆的半弦长、半径、弦心距恰好构成Rt所以由此解得代入得切线方程16.解:(1)直线方程,可以改写为,所以直线必经过直线的交点.由方程组解得即两直线的交点为A 又因为点与圆心的距离,所以该点在,故不论取什么实数,直线与圆C恒相交.(2)连接,的垂线,此时的直线与圆相交于.为直线被圆所截得的最短弦长.此时,.即最短弦长为.又直线的斜率,所以直线的斜率为2.此时直线方程为:                                 17.解:我们以台风中心为原点O东西方向为x轴,建立如图所示的直角坐标系.这样,受台风影响的圆形区域所对应的圆的方程为     轮船航线所在直线l的方程为    ,即如果圆O与直线l有公共点,则轮船受影响,需要改变航向;如果O与直线l无公共点,则轮船不受影响,无需改变航向.    由于圆心O00到直线l的距离  所以直线l与圆O无公共点.这说明轮船将不受台风影响,不用改变航向.18解:由   OPOQ  x1x2+y1y2=0,x1x2=96(y1+y2)+4y1y2=    解得m=3.19.解:将代入方程PQ满足条件 OPOQ,   此时Δ圆心坐标为(-3),半径20解法一:(利用圆心到两交点的距离相等求圆心) 将两圆的方程联立得方程组  解这个方程组求得两圆的交点坐标A(-40),B02). 因所求圆心在直线上,故设所求圆心坐标为则它到上面的两上交点 (-4002)的距离相等,故有 从而圆心坐标是(-33).   故所求圆的方程为解法二:(利用弦的垂直平分线过圆心求圆的方程) 同解法一求得两交点坐标A(-40),B02),AB的中垂线为 它与直线交点(-33就是圆心,又半径 故所求圆的方程为解法三:(用待定系数法求圆的方程) 解法一求得两交点坐标为A(-40),B02). 设所求圆的方程为,因两点在此圆上,且圆心在上,所以得方 程组 解之得 故所求圆的方程为解法四:(用圆系方法求圆的方程.过后想想为什么?) 设所求圆的方程为   可知圆心坐标为 因圆心在直线上,所以解得 代入所设方程并化简,求圆的方程   

    相关教案

    高中数学苏教版必修22.2.1 圆的方程教学设计:

    这是一份高中数学苏教版必修22.2.1 圆的方程教学设计,共2页。教案主要包含了学习导航,精典范例等内容,欢迎下载使用。

    苏教版必修22.2.1 圆的方程教学设计:

    这是一份苏教版必修22.2.1 圆的方程教学设计,共3页。

    苏教版必修22.2.1 圆的方程教案:

    这是一份苏教版必修22.2.1 圆的方程教案,共2页。教案主要包含了学习导航,课堂互动,精典范例等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map