所属成套资源:陕西省西安市西工大附中2022届高三上学期第四次适应性训练试题试卷及答案
陕西省西安市西工大附中2022届高三上学期第四次适应性训练数学(理)试题含答案
展开
这是一份陕西省西安市西工大附中2022届高三上学期第四次适应性训练数学(理)试题含答案,共8页。试卷主要包含了下列命题中错误的是,下列四个命题中,正确的有,若选①②推出③等内容,欢迎下载使用。
2022年全国普通高等学校招生统一考试第四次适应性训练理科数学一.选择题(12×5=60分)1.已知集合,则满足条件的集合的个数为( )A.2 B.3 C.4 D.8 2.若复数,其中是虚数单位,则复数的模为( )A. B. C. D.2 3.下列命题中错误的是( )A.如果,那么平面内一定存在直线平行于平面B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面⊥平面,平面⊥平面,,那么⊥平面D.如果平面⊥平面,那么平面内所有直线都垂直于平面 4.下列四个命题中,正确的有( )①随机变量服从正态分布,则②③命题的否定是④复数,若则A.1个 B.2个 C.3个 D.4个 5.达芬奇的经典之作《蒙娜丽莎》举世闻名,画中女子神秘的微笑,数百年来让无数观赏者入迷,现将画中女子的嘴唇近似的看作一个圆弧,设嘴角、间的圆弧长为,嘴角间的距离为,圆弧所对的圆心角为(为弧度角),则、和所满足的恒等关系为( ) A. B. C. D. 6.已知实数满足不等式组则的最大值为( )A.16 B.12 C.5 D.3 7.如图,矩形内的阴影部分是由曲线及直线与轴围成,向矩形内随机投掷一点,若落在阴影部分的概率为,则的值是( )A. B. C. D. 8.已知为平面向量,若与的夹角为,与的夹角为,则( )A. B. C. D. 9.已知中,,则该三角形的形状为( )A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形 10.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率是( )A. B. C. D. 11.正四面体的棱长为4,为棱的中点,过作此正四面体的外接球的截面,则该截面面积的取值范围是( )A. B. C. D. 12.已知点,曲线,直线与曲线交于两点,若周长的最小值为2,则的值为( )A.8 B.6 C.4 D.2 二.填空题(4×5=20分)13.设,若,则的最大值为 .14.二项式的展开式中常数项为,则的值为 .15.双曲线的左、右焦点分别为、,是右支上的一点,与轴交于点,的内切圆在边上的切点为,若,则的离心率为 . 16.将正整数排成下图所示的数阵,其中第行有个数,如果2 021是表中第行的第个数,则 . 三.解答题(5×12+10=70分)(一)必考题:共60分17.(本题满分12分)已知数列的前项和为.(1)从下面①②③中选取两个作为条件,证明另外一个成立,①,②,③(2)在(1)的条件下,若,数列的前项和为,求证:. 18.(本题满分12分)如图,已知,,,平面平面,,,为中点.(1)证明:平面;(2)求直线与平面所成角的正切值. 19.(本题满分12分)少数民族文化作为中华文化的重要组成部分,是社会主义文化建设的重要内容.长期以来,连江县将保护畲族文化作为民族工作的一项重要工作,每年农历三月三,连江县小沧乡都会举行畲族文化节,畲族青年男女喜欢跳起欢快的竹竿舞.跳竹竿舞,不但是一种文娱活动,而且能强身健体.现有的竹竿各3根、2根、2根,从中随机取出3根.(1)求所取3根竹竿中恰有2根长度相同的概率;(2)表示所取3根竹竿中长度的中位数,求的分布列和数学期望. 20.(本题满分12分)已知点,点是圆上的任意一点,线段的垂直平分线与直线交于点,记动点的轨迹为曲线.(1)求曲线的方程;(2)设是分别过点的两条平行直线,交曲线于两个不同的点,交曲线于两个不同的点,求四边形面积的最大值. 21.(本题满分12分)已知函数在原点处的切线方程为.(1)求的值及f (x)的单调区间;(2)记,b∈(0,2),讨论函数g(x)在(0,π)上零点的个数.(参考数据:). (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本题满分10分)【选修4-4 极坐标与参数方程】在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程,曲线的极坐标方程为.(1)写出直线和曲线的直角坐标方程;(2)已知点,若直线与曲线交于两点,中点为,求的值. 23.(本题满分10分)【选修4-5 不等式选讲】设函数,.(1)解不等式;(2)若对任意的恒成立,求实数的取值范围. 2022年全国普通高等学校招生统一考试第四次适应性训练理科数学参考答案一.选择题题号123456789101112选项CADBBBBDCCAB 二.填空题13. 1 14. 2 15. 16. 1009 三.解答题17.(1)若选①②推出③证明:因为所以所以数列是以4为首项,2为公比的等比数列,所以当时,与上式相减得当,所以成立.若选①③推出②证明:因为所以(2)证明:由(1)知,所以18. (1)证明:设中点为,连,∵为中点,∴,又由题意,∴,且,∴四边形为平形四边形,∴∵∴,又∵平面平面,平面平面,平面,∴平面.又平面,∴,∴,又,∴,∴,∵,平面,平面,∴平面.(2)以点为原点,以方向为轴,以方向为轴,以方向为轴,建立如图所示坐标系,,,,,设平面的法向量,则,∴取,,,∴,设直线与平面所成角为,则,∴.19.解:(1)记“所取3根竹竿中恰有2根长度相同”为事件A,则(2)X的可能值为3,4,5,则X的分布列为X345P 20(Ⅰ)由题意,线段的垂直平分线与直线交于点Q,可得,所以,所以Q的轨迹是以点为焦点,6为长轴长的椭圆,设椭圆的方程为,可得,则,所以点Q的轨迹方程为.(Ⅱ)直线的斜率不为0,设,直线的方程为,联立方程组,整理得,则,所以根据椭圆的对称性可知,四边形为平行四边形,原点O是对角线的交点,所以四边形的面积等于的面积的4倍,点O到直线:的距离,所以的面积,令,则,可得,设,则,因为,所以,所以函数在单调递增,所以当时,取得最小值,最小值为,所以的面积的最大值为,四边形ABNM的面积的最大值为.21.解:(1)在递增, .综上:22【解析】(1)因为直线,故,即直线的直角坐标方程为,因为曲线:,则曲线的直角坐标方程为,即,(2)设直线的参数方程为(为参数),代入曲线的直角坐标系方程得.设,对应的参数分别为,,则,,所以M对应的参数,故23解:(1)当时,,即,即,即,即当时,,即,即当时,,即,即,综上所述,不等式的解集为(2)当时,,即,所以,得当时,,即,所以,即当时,,即,即可,即综上所述,,即的取值范围为
相关试卷
这是一份2022届陕西省西安市西工大附中高三第七次适应性训练数学(理)试题PDF版含答案,文件包含试题pdf、答案pdf等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2022届陕西省西安市西工大附中高三第六次适应性训练数学(理)试题PDF版含答案,文件包含数学理答案pdf、数学理试题pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
这是一份陕西省西安市西工大附中2022届高三第七次适应性训练数学(文)试题PDF版含答案,文件包含7模试题文数pdf、7模答案文数pdf等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。