专题10函数基础(共40题)-2021年中考数学真题分项汇编(解析版)【全国通用】
展开2021年中考数学真题分项汇编【全国通用】(第01期)
专题10函数基础(共40题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·湖北黄石市·中考真题)函数的自变量的取值范围是( )
A. B. C.且 D.且
【答案】C
【分析】
根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.
【详解】
解:函数的自变量的取值范围是:
且,
解得:且,
故选:C.
【点睛】
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
2.(2021·广西来宾市·中考真题)如图是某市一天的气温随时间变化的情况,下列说法正确的是( )
A.这一天最低温度是-4℃ B.这一天12时温度最高 C.最高温比最低温高8℃ D.0时至8时气温呈下降趋势
【答案】A
【分析】
根据气温变化图逐项进行判断即可求解.
【详解】
解:A. 这一天最低温度是,原选项判断正确,符合题意;
B. 这一天14时温度最高,原选项判断错误,不合题意;
C. 这一天最高气温8℃,最低气温-4℃,最高温比最低温高,原选项判断错误,不合题意;
D. 时至时气温呈先下降在上升趋势,原选项判断错误,不合题意.
故选:A
【点睛】
本题考查了根据函数图象读取信息,理解气温随时间变化而变化并从中读取信息是解题关键.
3.(2021·四川泸州市·)函数的自变量x的取值范围是( )
A.x<1 B.x>1 C.x≤1 D.x≥1
【答案】B
【分析】
根据二次根式被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
解:由题意得,x-1≥0且x-1≠0,
解得x>1.
故选:B.
【点睛】
本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
4.(2021·江苏无锡市·中考真题)函数y=的自变量x的取值范围是( )
A.x≠2 B.x<2 C.x≥2 D.x>2
【答案】D
【分析】
根据被开放式的非负性和分母不等于零列出不等式即可解题.
【详解】
解:∵函数y=有意义,
∴x-20,
即x>2
故选D
【点睛】
本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.
5.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系.下列描述错误的是( )
A.小明家距图书馆3km
B.小明在图书馆阅读时间为2h
C.小明在图书馆阅读书报和往返总时间不足4h
D.小明去图书馆的速度比回家时的速度快
【答案】D
【分析】
根据题意,首先分析出函数图象中每一部分所对应的实际意义,然后逐项分析即可.
【详解】
根据题意可知,函数图象中,0-1h对应的实际意义是小明从家到图书馆的过程,走过的路程为3km,故A正确;
1-3h对应的实际意义是小明在图书馆阅读,即阅读时间为3-1=2h,故B正确;
3h后直到纵坐标为0,对应的实际意义为小明从图书馆回到家中,显然,这段时间不足1h,从而小明在图书馆阅读书报和往返总时间不足4h,故C正确;
显然,从图中可知小明去图书馆的速度为,回来时,路程同样是3km,但用时不足1h,则回来时的速度大于,即大于去时的速度,故D错误;
故选:D.
【点睛】
本题考查函数图象与实际行程问题,理解函数图象所对应的实际意义是解题关键.
6.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )
A.4860年 B.6480年 C.8100年 D.9720年
【答案】C
【分析】
根据物质所剩的质量与时间的规律,可得答案.
【详解】
解:由图可知:
1620年时,镭质量缩减为原来的,
再经过1620年,即当3240年时,镭质量缩减为原来的,
再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,
...,
∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,
此时mg,
故选C.
【点睛】
本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.
7.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )
A.小明修车花了15min
B.小明家距离学校1100m
C.小明修好车后花了30min到达学校
D.小明修好车后骑行到学校的平均速度是3m/s
【答案】A
【分析】
根据函数图像进行分析计算即可判断.
【详解】
解:根据图像7:05-7:20为修车时间20-5=15分钟,故A正确;
小明家距离学校2100m,故B错误;
小明修好车后花了30-20=10分钟到达学校,故C错误;
小明修好车后骑行到学校的平均速度是(2100-1000)÷600=m/s,故D错误;
故选:A.
【点睛】
本题考查函数图像的识别,正确理解函数图像的实际意义是解题的关键.
8.(2021·海南中考真题)如图,点都在方格纸的格点上,若点A的坐标为,点B的坐标为,则点C的坐标是( )
A. B. C. D.
【答案】D
【分析】
根据点的坐标建立平面直角坐标系,由此即可得出答案.
【详解】
解:由点的坐标建立平面直角坐标系如下:
则点的坐标为,
故选:D.
【点睛】
本题考查了求点的坐标,正确建立平面直角坐标系是解题关键.
9.(2021·湖北荆州市·中考真题)若点关干轴的对称点在第四象限,则的取值范围在数轴上表示为( )
A.
B.
C.
D.
【答案】C
【分析】
先根据题意求出点关于轴的对称点坐标,根据点在第四象限列方程组,求解即可.
【详解】
∵
∴点 关于轴的对称点坐标为
∵在第四象限
∴
解得:
故选:C
【点睛】
本题考查点关于坐标轴对称点求法,以及根据象限点去判断参数的取值范围,能根据题意找见相关的关系是解题关键.
10.(2021·江苏无锡市·中考真题)在中,,,,点P是所在平面内一点,则取得最小值时,下列结论正确的是( )
A.点P是三边垂直平分线的交点 B.点P是三条内角平分线的交点
C.点P是三条高的交点 D.点P是三条中线的交点
【答案】D
【分析】
以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,则=,可得P(2,)时,最小,进而即可得到答案.
【详解】
以点A为坐标原点,AB所在直线为x轴,建立直角坐标系,如图,
则A(0,0),B(6,0),C(0,8),
设P(x,y),则=
==,
∴当x=2,y=时,即:P(2,)时,最小,
∵由待定系数法可知:AB边上中线所在直线表达式为:,
AC边上中线所在直线表达式为:,
又∵P(2,)满足AB边上中线所在直线表达式和AC边上中线所在直线表达式,
∴点P是三条中线的交点,
故选D.
【点睛】
本题主要考查三角形中线的交点,两点间的距离公式,建立合适的坐标系,把几何问题化为代数问题,是解题的关键.
11.(2021·四川自贡市·中考真题)如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为( )
A. B. C. D.
【答案】D
【分析】
先根据题意得出OA=8,OC=2,再根据勾股定理计算即可
【详解】
解:由题意可知:AC=AB
∵,
∴OA=8,OC=2
∴AC=AB=10
在Rt△OAB中,
∴B(0,6)
故选:D
【点睛】
本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键
12.(2021·江苏常州市·中考真题)为规范市场秩序、保障民生工程,监管部门对某一商品的价格持续监控.该商品的价格(元/件)随时间t(天)的变化如图所示,设(元/件)表示从第1天到第t天该商品的平均价格,则随t变化的图像大致是( )
A. B.
C. D.
【答案】A
【分析】
根据函数图像先求出关于t的函数解析式,进而求出关于t的解析式,再判断各个选项,即可.
【详解】
解:∵由题意得:当1≤t≤6时,=2t+3,
当6<t≤25时,=15,
当25<t≤30时,=-2t+65,
∴当1≤t≤6时,=,
当6<t≤25时,=,
当25<t≤30时,=
= ,
∴当t=30时,=13,符合条件的选项只有A.
故选A.
【点睛】
本题主要考查函数图像和函数解析式,掌握待定系数法以及函数图像上点的坐标意义,是解题的关键.
13.(2021·黑龙江齐齐哈尔市·中考真题)某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,出发时油箱中有40升油,到乙地后发现油箱中还剩4升油.则油箱中所剩油y(升)与时间t(小时)之间函数图象大致是( )
A. B.
C. D.
【答案】C
【分析】
由题意可将行程分为3段:停车休息前、停车休息中、停车休息后.根据停车前和停车后,油箱中油量随时间的增加而减少;停车休息中,时间增加但油箱中的油量不变.表示在函数图象上即可.
【详解】
解:∵某人驾车匀速从甲地前往乙地,中途停车休息了一段时间,
∴休息前油箱中的油量随时间增加而减少,休息时油量不发生变化.
∵再次出发油量继续减小,到乙地后发现油箱中还剩4升油,
∴只有符合要求.
故选:.
【点睛】
本题考查了用图象法表示函数关系,明确三段行程油量随时间的增加发生的变化情况是解题的关键.
14.(2021·河南中考真题)如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )
A. B. C. D.
【答案】C
【分析】
先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.
【详解】
解:由图2可知,当P点位于B点时,,即,
当P点位于E点时,,即,则,
∵,
∴,
即,
∵
∴,
∵点为的中点,
∴,
故选:C.
【点睛】
本题考查了学生对函数图像的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图像中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.
15.(2021·广西玉林市·中考真题)图(1),在中,,点从点出发,沿三角形的边以/秒的速度逆时针运动一周,图(2)是点运动时,线段的长度()随运动时间(秒)变化的关系图象,则图(2)中点的坐标是( )
A. B. C. D.
【答案】C
【分析】
由图象及题意易得AB=8cm,AB+BC=18cm,则有BC=10cm,当x=13s时,点P为BC的中点,进而根据直角三角形斜边中线定理可求解.
【详解】
解:由题意及图象可得:
当点P在线段AB上时,则有,AP的长不断增大,当到达点B时,AP为最大,所以此时AP=AB=8cm;
当点P在线段BC上时,由图象可知线段的长度先随运动时间的增大而减小,再随运动时间的增大而增大,当到达点C时,则有AB+BC=18cm,即BC=10cm,由图象可知当时间为13s时,则BP=13-8=5cm,此时点P为BC的中点,如图所示:
∵,
∴,
∴点的坐标是;
故选C.
【点睛】
本题主要考查勾股定理、直角三角形斜边中线定理及函数图象,解题的关键是根据函数图象得到相关信息,然后进行求解即可.
16.(2021·山东菏泽市·中考真题)如图(1),在平面直角坐标系中,矩形在第一象限,且轴,直线沿轴正方向平移,在平移过程中,直线被矩形截得的线段长为,直线在轴上平移的距离为,、间的函数关系图象如图(2)所示,那么矩形的面积为( )
A. B. C.8 D.10
【答案】C
【分析】
根据平移的距离可以判断出矩形BC边的长,根据的最大值和平移的距离可以求得矩形AB边的长,从而求得面积
【详解】
如图:根据平移的距离在4至7的时候线段长度不变,
可知图中,
根据图像的对称性,,
由图(2)知线段最大值为,即
根据勾股定理
矩形的面积为
故答案为:C
【点睛】
本题考查了矩形的面积计算,一次函数图形的实际意义,勾股定理,一次函数的分段函数转折点的意义;正确的分析函数图像,数形结合解决实际问题是解题的关键.
17.(2021·新疆中考真题)如图,在矩形ABCD中,,.点P从点A出发,以2cm/s的速度在矩形的边上沿运动,当点P与点D重合时停止运动.设运动的时间为(单位:s),的面积为S(单位:),则S随t变化的函数图象大致为( )
A. B. C. D.
【答案】D
【分析】
分点P在AB上运动, 0≤t≤4;点P在BC上运动, 4<t≤7;点P在CD上运动, 7<t≤11,分别计算即可
【详解】
当点P在AB上运动时, S==6t,0≤t≤4;
当点P在BC上运动时, S==24,4<t≤7;
点P在CD上运动, S=, 7<t≤11,
故选D.
【点睛】
本题考查了矩形中的动点面积函数图像问题,正确进行分类,清楚函数图像的性质是解题的关键.
18.(2021·甘肃武威市·中考真题)如图1,在中,于点.动点从点出发,沿折线方向运动,运动到点停止.设点的运动路程为的面积为与的函数图象如图2,则的长为( )
A.3 B.6 C.8 D.9
【答案】B
【分析】
从图象可知,,点M运动到点 B位置时, 的面积达到最大值y=3,结合等腰三角形的“三线合一”的性质、三角形的面积公式和勾股定理可求得 AC的长.
【详解】
解:根据函数图象可知,点M的运动路程,点 M运动到点B的位置时,的面积y达到最大值3,即的面积为3.
∵
∴
∴.
∴,即: ,
,即: .
∵,
∴.
两式相加,得,2AD=6.
∴AC=2AD=6.
故选:B
【点睛】
本题考查了等腰三角形的性质、勾股定理、等式的性质与恒等变形、函数图象等知识点,从函数图象中获取相应的信息,利用勾股定理和三角形的面积公式,进行等式的恒等变形是解题的关键.
19.(2021·湖南中考真题)如图,在边长为4的菱形中,.点从点出发,沿路线运动.设点经过的路程为,以点,,为顶点的三角形的面积为,则下列图象能反映与的函数关系的是( )
A. B. C. D.
【答案】A
【分析】
过点B作BE⊥AD于点E,由题意易得,当点P从点A运动到点B时,△ADP的面积逐渐增大,当点P在线段BC上时,△ADP的面积保持不变,当点P在CD上时,△ADP的面积逐渐减小,由此可排除选项.
【详解】
解:过点B作BE⊥AD于点E,如图所示:
∵边长为4的菱形中,,
∴,
∴∠ABE=30°,
∴,
∴,
当点P从点A运动到点B时,△ADP的面积逐渐增大,点P与点B重合时,△ADP的面积最大,最大为;
当点P在线段BC上时,△ADP的面积保持不变;
当点P在CD上时,△ADP的面积逐渐减小,最小值为0;
∴综上可得只有A选项符合题意;
故选A.
【点睛】
本题主要考查函数图象及菱形的性质、勾股定理,熟练掌握函数图象及菱形的性质、勾股定理是解题的关键.
20.(2021·山东聊城市·中考真题)如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是( )
A. B. C. D.
【答案】B
【分析】
依次分析当、、三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.
【详解】
解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,
∵已知AB∥CD,AB与CD之间的距离为4,
∴DE=CF=4,
∵点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,
∴PQ∥DE∥CF,
∵AD=5,
∴,
∴当时,P点在AE之间,此时,AP=t,
∵,
∴,
∴,
因此,当时,其对应的图像为,故排除C和D;
∵CD=3,
∴EF=CD=3,
∴当时,P点位于EF上,此时,Q点位于DC上,其位置如图中的P1Q1,则,
因此当时,对应图像为,即为一条线段;
∵∠ABC=45°,
∴BF=CF=4,
∴AB=3+3+4=10,
∴当时,P点位于FB上,其位置如图中的P2Q2,此时,P2B=10-t,
同理可得,Q2P2=P2B=10-t,
,
因此当时,对应图像为,其为开口向下的抛物线的的一段图像;
故选:B.
【点睛】
本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.
21.(2021·四川资阳市·中考真题)一对变量满足如图的函数关系.设计以下问题情境:
①小明从家骑车以600米/分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米/分的速度匀速骑回家.设所用时间为x分钟,离家的距离为y千米;
②有一个容积为1.5升的开口空瓶,小张以0.6升/秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升/秒的速度匀速倒空瓶中的水.设所用时间为x秒,瓶内水的体积为y升;
③在矩形中,,点P从点A出发.沿路线运动至点A停止.设点P的运动路程为x,的面积为y.其中,符合图中函数关系的情境个数为( )
A.3 B.2 C.1 D.0
【答案】A
【分析】
由题意及函数图象可直接进行判断①②,③由题意作出图形,然后再根据矩形的性质、勾股定理及三角形面积计算公式可进行判断.
【详解】
解:①设所用时间为x分钟,离家的距离为y千米,
600×2.5=1500(米)=1.5千米,1500÷1000=1.5分钟,
∵4.5-2.5=2分钟,6-4.5=1.5分钟,
∴①符合该函数关系;
②设所用时间为x秒,瓶内水的体积为y升,
∴0.6×2.5=1.5升,1.5÷1=1.5秒,
∴②符合该函数关系;
③如图所示:
∵四边形ABCD是矩形,,
∴,
∴,
设点P的运动路程为x,的面积为y,
由题意可得当点P从点A运动到点C时,的面积逐渐增大,直到运动到点C时,达到最大,即为,
当点P在线段CD上运动时,的面积保持不变,此时x的范围为,
当点P在线段DA上时,则的面积逐渐减小,当点P与点A重合时,的面积为0,此时x=6,
∴③也符合该函数关系;
∴符合图中函数关系的情境个数为3个;
故选A.
【点睛】
本题主要考查一次函数的图象与性质及矩形的性质、勾股定理,熟练掌握一次函数的图象与性质及矩形的性质、勾股定理是解题的关键.
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
22.(2021·山东济宁市·中考真题)已知一组数据0,1,,3,6的平均数是,则关于的函数解析式是____.
【答案】
【分析】
根据平均数的公式直接列式即可得到函数解析式.
【详解】
解:根据题意得:
,
故答案为:.
【点睛】
本题主要考查平均数的概念,熟练掌握平均数的公式是解决本题的关键.
23.(2021·湖南永州市·中考真题)已知函数,若,则_________.
【答案】2
【分析】
根据y值可确定x的取值范围,根据x的取值范围结合函数关系式列方程求出x的值即可得答案.
【详解】
∵0≤x<1时,0≤x2<1,,
∴y=2时,x≥1,
∴2x-2=2,
解得:x=2,
故答案为:2
【点睛】
本题考查函数值,根据y值结合各函数关系式得出对应的x的取值范围是解题关键.
24.(2021·上海中考真题)已知,那么__________.
【答案】.
【分析】
直接利用已知的公式将x的值代入求出答案.
【详解】
解:∵,
∴,
故答案为:.
【点睛】
本题主要考查了函数值,正确把已知代入是解题关键.
25.(2021·四川凉山彝族自治州·中考真题)函数中,自变量x的取值范围是______________.
【答案】x≥-3且x≠0
【分析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0列不等式组求解.
【详解】
解:根据题意得:x+3≥0且x≠0,
解得x≥-3且x≠0.
故答案为:x≥-3且x≠0.
【点睛】
本题考查了函数自变量的取值范围.考查的知识点为:分式有意义,分母不为0,二次根式有意义,被开方数是非负数.
26.(2021·湖南娄底市·中考真题)函数中,自变量的取值范围是__________.
【答案】
【分析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.
【详解】
由题意得:x-1≥0,
解得:x≥1,
故答案为:x≥1.
【点睛】
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
27.(2021·湖南怀化市·中考真题)在函数 中,自变量x的取值范围是___________.
【答案】且
【分析】
根据二次根式中的被开方数是非负数与分母不能为0进行求解.
【详解】
由题意知,且,
解得,且,
故答案为:且.
【点睛】
本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义,①当函数表达式是分式时,考虑分式的分母不能为0;②当函数表达式是二次根式时,被开方数非负.
28.(2021·四川广安市·中考真题)在函数中,自变量x的取值范围是___.
【答案】
【详解】
试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
29.(2021·黑龙江中考真题)在函数y=中,自变量x的取值范围是_____.
【答案】.
【详解】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.
30.(2021·黑龙江鹤岗市·中考真题)函数中,自变量x的取值范围是____.
【答案】.
【详解】
试题分析:由已知:x-2≠0,解得x≠2;
考点:自变量的取值范围.
31.(2021·江苏南京市·中考真题)如图,在平面直角坐标系中,的边的中点C,D的横坐标分别是1,4,则点B的横坐标是_______.
【答案】6
【分析】
根据中点的性质,先求出点A的横坐标,再根据A、D求出B点横坐标.
【详解】
设点A的横坐标为a,点B的横坐标是b;
点的横坐标是0,C的横坐标是1 ,C,D是的中点
得
得
点B的横坐标是6.
故答案为6.
【点睛】
本题考查了中点的性质,平面直角坐标系,三角形中线的性质,正确的使用中点坐标公式并正确的计算是解题的关键.
32.(2021·广西柳州市·中考真题)在x轴,y轴上分别截取,再分别以点A,B为圆心,以大于长为半径画弧,两弧交于点P,若点P的坐标为,则a的值是_______.
【答案】2或
【分析】
分P点在第一象限和第二象限分类讨论,由尺规作图痕迹可知,P为∠AOB的角平分线,由此得到横坐标与纵坐标相等或互为相反数.
【详解】
解:当P点位于第一象限时,如下图所示:
由尺规作图痕迹可知,OP为∠AOB角平分线,此时P点横坐标与纵坐标相等,
故a=2;
当P点位于第二象限时,如下图所示:
由尺规作图痕迹可知,OP为∠AOB角平分线,此时P点横坐标与纵坐标互为相反数,
故a=-2;
∴a的值是2或-2.
【点睛】
本题考查了角平分线的尺规作图,属于基础题,本题要注意考虑P点在第一象限和第二象限这两种情况.
33.(2021·山西中考真题)如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”,两点的坐标分别为,,则叶杆“底部”点的坐标为__________.
【答案】
【分析】
根据A,两点的坐标分别为,,可以判断原点的位置,然后确定C点坐标即可.
【详解】
解:∵,两点的坐标分别为,,
∴B点向右移动3位即为原点的位置,
∴点C的坐标为,
故答案为:.
【点睛】
本题主要考查在平面直角系中,根据已知点的坐标,求未知点的坐标,解题的关键是根据已知点的坐标确定原点的坐标.
34.(2021·山东泰安市·中考真题)如图,点在直线上,点的横坐标为2,过点作,交x轴于点,以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长的交x轴于点;…;按照这个规律进行下去,则第n个正方形的边长为________(结果用含正整数n的代数式表示).
【答案】
【分析】
根据题中条件,证明所有的直角三角形都相似且确定相似比,再具体算出前几个正方形的边长,然后再找规律得出第个正方形的边长.
【详解】
解:点在直线上,点的横坐标为2,
点纵坐标为1.
分别过,作轴的垂线,分别交于,下图只显示一条;
,
类似证明可得,图上所有直角三角形都相似,有
,
不妨设第1个至第个正方形的边长分别用:来表示,通过计算得:
,
,
按照这个规律进行下去,则第n个正方形的边长为,
故答案是:.
【点睛】
本题考查了三角形相似,解题的关键是:利用条件及三角形相似,先研究好前面几个正方形的边长,再从中去找计算第个正方形边长的方法与技巧.
35.(2021·贵州贵阳市·中考真题)如图,在平面直角坐标系中,菱形对角线的交点坐标是,点的坐标是,且,则点的坐标是___________.
【答案】(2,0)
【分析】
根据菱形的性质,可得OA=OC,结合勾股定理可得OA=OC=2,进而即可求解.
【详解】
解:∵菱形对角线的交点坐标是,点的坐标是,
∴OB=1,OA=OC,
∵,
∴OC=,
∴OA=2,即:A的坐标为:(2,0),
故答案是:(2,0).
【点睛】
本题主要考查菱形的性质,勾股定理以及点的坐标,熟练掌握菱形的性质,是解题的关键.
36.(2021·湖北中考真题)如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为___________.
【答案】
【分析】
先根据点坐标的平移变换规律求出点的坐标,再归纳类推出一般规律即可得.
【详解】
解:由题意得:,即,
,即,
,即,
,即,
观察可知,点的坐标为,其中,
点的坐标为,其中,
点的坐标为,其中,
归纳类推得:点的坐标为,其中为正整数,
,
点的坐标为,
故答案为:.
【点睛】
本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键.
37.(2021·江苏常州市·中考真题)如图,在平面直角坐标系中,四边形是平行四边形,其中点A在x轴正半轴上.若,则点A的坐标是__________.
【答案】(3,0)
【分析】
根据平行四边形的性质,可知:OA=BC=3,进而即可求解.
【详解】
解:∵四边形是平行四边形,
∴OA=BC=3,
∴点A的坐标是(3,0),
故答案是:(3,0).
【点睛】
本题主要考查平行四边形的性质以及点的坐标,掌握平行四边形的对边相等,是解题的关键.
38.(2021·青海中考真题)已知点在第四象限,则的取值范围是______.
【答案】
【分析】
根据直角坐标系、一元一次不等式组的性质计算,即可得到答案.
【详解】
∵点在第四象限
∴
∴
∴
故答案为:.
【点睛】
本题考查了直角坐标系、一元一次不等式组的知识;解题的关键是熟练掌握象限、一元一次不等式组的性质,从而完成求解.
39.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点在第二象限,则整数m的值为_________.
【答案】2
【分析】
根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.
【详解】
解:由题意得:,
解得:,
∴整数m的值为2,
故答案为:2.
【点睛】
本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.
40.(2021·浙江宁波市·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A的“倒数点”.如图,矩形的顶点C为,顶点E在y轴上,函数的图象与交于点A.若点B是点A的“倒数点”,且点B在矩形的一边上,则的面积为_________.
【答案】或
【分析】
根据题意,点B不可能在坐标轴上,可对点B进行讨论分析:①当点B在边DE上时;②当点B在边CD上时;分别求出点B的坐标,然后求出的面积即可.
【详解】
解:根据题意,
∵点称为点的“倒数点”,
∴,,
∴点B不可能在坐标轴上;
∵点A在函数的图像上,
设点A为,则点B为,
∵点C为,
∴,
①当点B在边DE上时;
点A与点B都在边DE上,
∴点A与点B的纵坐标相同,
即,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
②当点B在边CD上时;
点B与点C的横坐标相同,
∴,解得:,
经检验,是原分式方程的解;
∴点B为,
∴的面积为:;
故答案为:或.
【点睛】
本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.
专题10函数基础(共40题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】: 这是一份专题10函数基础(共40题)-2021年中考数学真题分项汇编(原卷版+解析版)【全国通用】,文件包含专题10函数基础共40题-2021年中考数学真题分项汇编解析版全国通用docx、专题10函数基础共40题-2021年中考数学真题分项汇编原卷版全国通用docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题10函数基础(共40题)-2021年中考数学真题分项汇编(原卷版)【全国通用】: 这是一份专题10函数基础(共40题)-2021年中考数学真题分项汇编(原卷版)【全国通用】,共12页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
专题27规律探究题(共40道)-2020年中考数学真题分项汇编(原卷版)【全国通用】: 这是一份专题27规律探究题(共40道)-2020年中考数学真题分项汇编(原卷版)【全国通用】,共11页。