搜索
    上传资料 赚现金
    英语朗读宝

    专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案

    专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第1页
    专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第2页
    专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案

    展开

    这是一份专题27导数(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共27页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。
    专题27导数(文)知识点与大题16道高考真题(解析版)
    一.导数的定义:

    2.利用定义求导数的步骤:
    ①求函数的增量:;②求平均变化率:;
    ③取极限得导数:
    (下面内容必记)
    二、导数的运算:
    (1)基本初等函数的导数公式及常用导数运算公式:
    ①;②;;
    ③; ④ ⑤ ⑥;
    ⑦; ⑧
    法则1:;(口诀:和与差的导数等于导数的和与差).
    法则2:(口诀:前导后不导相乘,后导前不导相乘,中间是正号)
    法则3:
    (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)
    (2)复合函数的导数求法:
    ①换元,令,则②分别求导再相乘③回代
    三.导数的物理意义
    1.求瞬时速度:物体在时刻时的瞬时速度就是物体运动规律在 时的导数,
    即有。
    2.V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
    四.导数的几何意义:
    函数在处导数的几何意义,曲线在点处切线的斜率是。于是相应的切线方程是:。
    题型三.用导数求曲线的切线
    注意两种情况:
    (1)曲线在点处切线:性质:。相应的切线方程是:
    (2)曲线过点处切线:先设切点,切点为 ,则斜率k=,切点 在曲线上,切点在切线上,切点坐标代入方程得关于a,b的方程组,解方程组来确定切点,最后求斜率k=,确定切线方程。
    五.函数的单调性:设函数在某个区间内可导,
    (1)该区间内为增函数;
    (2)该区间内为减函数;
    注意:当在某个区间内个别点处为零,在其余点处为正(或负)时,在这个区间上仍是递增(或递减)的。
    (3)在该区间内单调递增在该区间内恒成立;
    (4)在该区间内单调递减在该区间内恒成立;
    题型一、利用导数证明(或判断)函数f(x)在某一区间上单调性:
    步骤: (1)求导数
    (2)判断导函数在区间上的符号
    (3)下结论
    ①该区间内为增函数;
    ②该区间内为减函数;
    题型二、利用导数求单调区间
    求函数单调区间的步骤为:
    (1)分析 的定义域; (2)求导数
    (3)解不等式,解集在定义域内的部分为增区间
    (4)解不等式,解集在定义域内的部分为减区间
    题型三、利用单调性求参数的取值(转化为恒成立问题)
    思路一.(1)在该区间内单调递增在该区间内恒成立;
    (2)在该区间内单调递减在该区间内恒成立;
    思路二.先求出函数在定义域上的单调增或减区间,则已知中限定的单调增或减区间是定义域上的单调增或减区间的子集。
    注意:若函数f(x)在(a,c)上为减函数,在(c,b)上为增函数,则x=c两侧使函数(x)变号,即x=c为函数的一个极值点,所以
    六、函数的极值与其导数的关系:
    1.①极值的定义:设函数在点附近有定义,且若对附近的所有的点都有(或,则称为函数的一个极大(或小)值,为极大(或极小)值点。
    ②可导数在极值点处的导数为0(即),但函数在某点处的导数为0,并不一定函数在该处取得极值(如在处的导数为0,但没有极值)。
    ③求极值的步骤:
    第一步:求导数;
    第二步:求方程的所有实根;
    第三步:列表考察在每个根附近,从左到右,导数的符号如何变化,
    若的符号由正变负,则是极大值;
    若的符号由负变正,则是极小值;
    若的符号不变,则不是极值,不是极值点。
    2、函数的最值:
    ①最值的定义:若函数在定义域D内存,使得对任意的,都有,(或)则称为函数的最大(小)值,记作(或)
    ②如果函数在闭区间上的图象是一条连续不间断的曲线,则该函数在闭区间上必有最大值和最小值。
    ③求可导函数在闭区间上的最值方法:
    第一步;求在区间内的极值;
    第二步:比较的极值与、的大小:
    第三步:下结论:最大的为最大值,最小的为最小值。
    注意:1、极值与最值关系:函数的最值是比较整个定义域区间的函数值得出的,函数的最大值和最小值点可以在极值点、不可导点、区间的端点处取得。极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。
    2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值)
    3、注意:极大值不一定比极小值大。如的极大值为,极小值为2。
    注意:当x=x0时,函数有极值 f/(x0)=0。但是,f/(x0)=0不能得到当x=x0时,函数有极值;
    判断极值,还需结合函数的单调性说明。
    题型一、求极值与最值
    题型二、导数的极值与最值的应用
    题型四、导数图象与原函数图象关系
    导函数 原函数
    的符号 单调性
    与x轴的交点且交点两侧异号 极值
    的增减性 的每一点的切线斜率的变化趋势 (的图象的增减幅度)
    的增 的每一点的切线斜率增大(的图象的变化幅度快)
    减 的每一点的切线斜率减小 (的图象的变化幅度慢)
    1.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)
    已知函数.
    (1)当时,讨论的单调性;
    (2)若有两个零点,求的取值范围.
    【答案】(1)的减区间为,增区间为;(2).
    【分析】
    (1)将代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;
    (2)若有两个零点,即有两个解,将其转化为有两个解,令,求导研究函数图象的走向,从而求得结果.
    【详解】
    (1)当时,,,
    令,解得,令,解得,
    所以的减区间为,增区间为;
    (2)若有两个零点,即有两个解,
    从方程可知,不成立,即有两个解,
    令,则有,
    令,解得,令,解得或,
    所以函数在和上单调递减,在上单调递增,
    且当时,,
    而时,,当时,,
    所以当有两个解时,有,
    所以满足条件的的取值范围是:.
    【点睛】
    本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线和直线有两个交点,利用过点的曲线的切线斜率,结合图形求得结果.
    2.2020年全国统一高考数学试卷(文科)(新课标Ⅱ)
    已知函数f(x)=2lnx+1.
    (1)若f(x)≤2x+c,求c的取值范围;
    (2)设a>0时,讨论函数g(x)=的单调性.
    【答案】(1);(2)在区间和上单调递减,没有递增区间
    【分析】
    (1)不等式转化为,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;
    (2)对函数求导,把导函数的分子构成一个新函数,再求导得到,根据的正负,判断的单调性,进而确定的正负性,最后求出函数的单调性.
    【详解】
    (1)函数的定义域为:

    设,则有,
    当时,单调递减,
    当时,单调递增,
    所以当时,函数有最大值,
    即,
    要想不等式在上恒成立,
    只需;
    (2)且
    因此,设,
    则有,
    当时,,所以,单调递减,因此有,即
    ,所以单调递减;
    当时,,所以,单调递增,因此有,即,所以单调递减,
    所以函数在区间和上单调递减,没有递增区间.
    【点睛】
    本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.
    3.2020年全国统一高考数学试卷(文科)(新课标Ⅲ)
    已知函数.
    (1)讨论的单调性;
    (2)若有三个零点,求的取值范围.
    【答案】(1)详见解析;(2).
    【分析】
    (1),对分和两种情况讨论即可;
    (2)有三个零点,由(1)知,且,解不等式组得到的范围,再利用零点存在性定理加以说明即可.
    【详解】
    (1)由题,,
    当时,恒成立,所以在上单调递增;
    当时,令,得,令,得,
    令,得或,所以在上单调递减,在
    ,上单调递增.
    (2)由(1)知,有三个零点,则,且
    即,解得,
    当时,,且,
    所以在上有唯一一个零点,
    同理,,
    所以在上有唯一一个零点,
    又在上有唯一一个零点,所以有三个零点,
    综上可知的取值范围为.
    【点晴】
    本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.
    4.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)
    已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
    (1)证明:f′(x)在区间(0,π)存在唯一零点;
    (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
    【答案】(1)见解析;
    (2).
    【分析】
    (1)求导得到导函数后,设为进行再次求导,可判断出当时,,当时,,从而得到单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数,通过二次求导可判断出,;分别在,,和的情况下根据导函数的符号判断单调性,从而确定恒成立时的取值范围.
    【详解】
    (1)
    令,则
    当时,令,解得:
    当时,;当时,
    在上单调递增;在上单调递减
    又,,
    即当时,,此时无零点,即无零点
    ,使得
    又在上单调递减 为,即在上的唯一零点
    综上所述:在区间存在唯一零点
    (2)若时,,即恒成立

    则,
    由(1)可知,在上单调递增;在上单调递减
    且,,

    ①当时,,即在上恒成立
    在上单调递增
    ,即,此时恒成立
    ②当时,,,
    ,使得
    在上单调递增,在上单调递减
    又,
    在上恒成立,即恒成立
    ③当时,,
    ,使得
    在上单调递减,在上单调递增
    时,,可知不恒成立
    ④当时,
    在上单调递减
    可知不恒成立
    综上所述:
    【点睛】
    本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.
    5.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)
    已知函数.证明:
    (1)存在唯一的极值点;
    (2)有且仅有两个实根,且两个实根互为倒数.
    【答案】(1)见详解;(2)见详解
    【分析】
    (1)先对函数求导,根据导函数的单调性,得到存在唯一,使得,进而可得判断函数的单调性,即可确定其极值点个数,证明出结论成立;
    (2)先由(1)的结果,得到,,得到在内存在唯一实根,记作,再求出,即可结合题意,说明结论成立.
    【详解】
    (1)由题意可得,的定义域为,
    由,
    得,
    显然单调递增;
    又,,
    故存在唯一,使得;
    又当时,,函数单调递增;当时,,函数单调递减;
    因此,存在唯一的极值点;
    (2)由(1)知,,又,
    所以在内存在唯一实根,记作.
    由得,
    又,
    故是方程在内的唯一实根;
    综上,有且仅有两个实根,且两个实根互为倒数.
    【点睛】
    本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值、以及函数零点的问题,属于常考题型.
    6.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)
    已知函数.
    (1)讨论的单调性;
    (2)当时,记在区间的最大值为,最小值为,求的取值范围.
    【答案】(1)见详解;(2) .
    【分析】
    (1)先求的导数,再根据的范围分情况讨论函数单调性;(2) 讨论的范围,利用函数单调性进行最大值和最小值的判断,最终求得的取值范围.
    【详解】
    (1)对求导得.所以有
    当时,区间上单调递增,区间上单调递减,区间上单调递增;
    当时,区间上单调递增;
    当时,区间上单调递增,区间上单调递减,区间上单调递增.
    (2)
    若,在区间单调递减,在区间单调递增,所以区间上最小值为.而,故所以区间上最大值为.
    所以,设函数,求导当时从而单调递减.而,所以.即的取值范围是.
    若,在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.
    所以,而,所以.即的取值范围是.
    综上得的取值范围是.
    【点睛】
    (1)这是一道常规的函数导数不等式和综合题,题目难度比往年降低了不少.考查的函数单调性,最大值最小值这种基本概念的计算.思考量不大,由计算量补充.
    7.2019年北京市高考数学试卷(文科)
    已知函数.
    (Ⅰ)求曲线的斜率为1的切线方程;
    (Ⅱ)当时,求证:;
    (Ⅲ)设,记在区间上的最大值为M(a),当M(a)最小时,求a的值.
    【答案】(Ⅰ)和.
    (Ⅱ)见解析;
    (Ⅲ).
    【分析】
    (Ⅰ)首先求解导函数,然后利用导函数求得切点的横坐标,据此求得切点坐标即可确定切线方程;
    (Ⅱ)由题意分别证得和即可证得题中的结论;
    (Ⅲ)由题意结合(Ⅱ)中的结论分类讨论即可求得a的值.
    【详解】
    (Ⅰ),令得或者.
    当时,,此时切线方程为,即;
    当时,,此时切线方程为,即;
    综上可得所求切线方程为和.
    (Ⅱ)设,,令得或者,所以当时,,为增函数;当时,,为减函数;当时,,为增函数;
    而,所以,即;
    同理令,可求其最小值为,所以,即,综上可得.
    (Ⅲ)由(Ⅱ)知,
    所以是中的较大者,
    若,即时,;
    若,即时,;
    所以当最小时,,此时.
    【点睛】
    本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.
    8.2019年天津市高考数学试卷(文科)
    设函数,其中.
    (Ⅰ)若,讨论的单调性;
    (Ⅱ)若,
    (i)证明恰有两个零点
    (ii)设为的极值点,为的零点,且,证明.
    【答案】(I)在内单调递增.;
    (II)(i)见解析;(ii)见解析.
    【分析】
    (I);首先写出函数的定义域,对函数求导,判断导数在对应区间上的符号,从而得到结果;
    (II)(i)对函数求导,确定函数的单调性,求得极值的符号,从而确定出函数的零点个数,得到结果;
    (ii)首先根据题意,列出方程组,借助于中介函数,证得结果.
    【详解】
    (I)解:由已知,的定义域为,
    且,
    因此当时,,从而,
    所以在内单调递增.
    (II)证明:(i)由(I)知,,
    令,由,可知在内单调递减,
    又,且,
    故在内有唯一解,
    从而在内有唯一解,不妨设为,
    则,当时,,
    所以在内单调递增;
    当时,,
    所以在内单调递减,
    因此是的唯一极值点.
    令,则当时,,故在内单调递减,
    从而当时,,所以,
    从而,
    又因为,所以在内有唯一零点,
    又在内有唯一零点1,从而,在内恰有两个零点.
    (ii)由题意,,即,
    从而,即,
    因为当时,,又,故,
    两边取对数,得,
    于是,整理得,
    【点睛】
    本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想,考查综合分析问题和解决问题的能力.
    9.2018年全国普通高等学校招生统一考试文科数学(北京卷)
    设函数.
    (Ⅰ)若曲线在点处的切线斜率为0,求a;
    (Ⅱ)若在处取得极小值,求a的取值范围.
    【答案】(Ⅰ)
    (Ⅱ)
    【解析】
    分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围.
    详解:
    解:(Ⅰ)因为,
    所以.

    由题设知,即,解得.
    (Ⅱ)方法一:由(Ⅰ)得.
    若a>1,则当时,;
    当时,.
    所以在x=1处取得极小值.
    若,则当时,,
    所以.
    所以1不是的极小值点.
    综上可知,a的取值范围是.
    方法二:.
    (1)当a=0时,令得x=1.
    随x的变化情况如下表:
    x

    1


    +
    0



    极大值

    ∴在x=1处取得极大值,不合题意.
    (2)当a>0时,令得.
    ①当,即a=1时,,
    ∴在上单调递增,
    ∴无极值,不合题意.
    ②当,即01满足题意.
    (3)当a1时,=0,解得x1=,x2=.
    易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.
    g(x)的极大值g(x1)=g()=>0.
    g(x)的极小值g(x2)=g()=−.
    若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.
    若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.
    所以,的取值范围是.
    点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.
    11.(2018年新课标I卷文)已知函数.
    (1)设是的极值点.求,并求的单调区间;
    (2)证明:当时,.
    【答案】(1) a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.
    【解析】
    分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;
    (2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.
    详解:(1)f(x)的定义域为,f ′(x)=aex–.
    由题设知,f ′(2)=0,所以a=.
    从而f(x)=,f ′(x)=.
    当00;
    当x∈(,)时,f ′(x)

    相关学案

    专题31概率(文)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题31概率(文)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案,共15页。

    专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题31概率(文)知识点与大题16道高考真题(解析版)-备战2022年高考数学大题分类提升专题学案,共29页。学案主要包含了名师点睛等内容,欢迎下载使用。

    专题28导数(理)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案:

    这是一份专题28导数(理)知识点与大题16道高考真题(原卷版)-备战2022年高考数学大题分类提升专题学案,共7页。学案主要包含了导数的运算,利用单调性求参数的取值,函数的极值与其导数的关系,导数图象与原函数图象关系等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map