|学案下载
搜索
    上传资料 赚现金
    2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案
    立即下载
    加入资料篮
    2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案01
    2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案02
    2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案

    展开
    这是一份2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案,共12页。

    第四节 利用导数证明不等式

    考点1 单变量不等式的证明
     单变量不等式的证明方法
    (1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);
    (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数;
    (3)最值法:欲证f(x)<g(x),有时可以证明f(x)max<g(x)min.
     直接将不等式转化为函数的最值问题
     已知函数f(x)=ln x+ax2+(2a+1)x.
    (1)讨论f(x)的单调性;
    (2)当a<0时,证明f(x)≤--2.
    [解] (1)f(x)的定义域为(0,+∞),f′(x)=+2ax+2a+1=.
    当a≥0,则当x∈(0,+∞)时,f′(x)>0,故f(x)在(0,+∞)上单调递增.
    当a<0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0.
    故f(x)在上单调递增,在上单调递减.
    (2)证明:由(1)知,当a<0时,f(x)在x=-取得最大值,最大值为f=ln-1-.
    所以f(x)≤--2等价于ln-1-≤--2,即ln++1≤0.设g(x)=ln x-x+1,则g′(x)=-1.当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln++1≤0,即f(x)≤--2.
     将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f(x)≤f(x)max或f(x)≥f(x)min直接证得不等式.
     转化为两个函数的最值进行比较
     已知f(x)=xln x.
    (1)求函数f(x)在[t,t+2](t>0)上的最小值;
    (2)证明:对一切x∈(0,+∞),都有ln x>-成立.
    [解] (1)由f(x)=xln x,x>0,得f′(x)=ln x+1,
    令f′(x)=0,得x=.
    当x∈时,f′(x)<0,f(x)单调递减;
    当x∈时,f′(x)>0,f(x)单调递增.
    ①当0<t<<t+2,即0<t<时,
    f(x)min=f=-;
    ②当≤t<t+2,即t≥时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tln t.
    所以f(x)min=
    (2)证明:问题等价于证明xln x>-(x∈(0,+∞)).
    由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-,
    当且仅当x=时取到.
    设m(x)=-(x∈(0,+∞)),
    则m′(x)=,
    由m′(x)<0得x>1时,m(x)为减函数,
    由m′(x)>0得0<x<1时,m(x)为增函数,
    易知m(x)max=m(1)=-,当且仅当x=1时取到.
    从而对一切x∈(0,+∞),xln x≥-≥-,两个等号不同时取到,即证对一切x∈(0,+∞)都有ln x>-成立.
     在证明的不等式中,若对不等式的变形无法转化为一个函数的最值问题,可以借助两个函数的最值进行证明.
     构造函数证明不等式
     已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
    (1)求f(x)的单调区间与极值;
    (2)求证:当a>ln ,且x>0时,>x+-3a.
    [解] (1)由f(x)=ex-3x+3a,x∈R,知f′(x)=ex-3,x∈R.
    令f′(x)=0,得x=ln 3,
    于是当x变化时,f′(x),f(x)的变化情况如下表:
    x
    (-∞,ln 3)
    ln 3
    (ln 3,+∞)
    f′(x)

    0

    f(x)

    极小值

    故f(x)的单调递减区间是(-∞,ln 3],
    单调递增区间是[ln 3,+∞),
    f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=eln 3-3ln 3+3a=3(1-ln 3+a).无极大值.
    (2)证明:待证不等式等价于ex>x2-3ax+1,
    设g(x)=ex-x2+3ax-1,x>0,
    于是g′(x)=ex-3x+3a,x>0.
    由(1)及a>ln =ln 3-1知:g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
    于是对任意x>0,都有g′(x)>0,所以g(x)在(0,+∞)上单调递增.
    于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
    而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
    即ex>x2-3ax+1,故>x+-3a.
     若证明f(x)>g(x),x∈(a,b),可以构造函数h(x)=f(x)-g(x),如果能证明h(x)在(a,b)上的最小值大于0,即可证明f(x)>g(x),x∈(a,b).
     已知函数f(x)=aex-bln x,曲线y=f(x)在点(1,f(1))处的切线方程为y=x+1.
    (1)求a,b;
    (2)证明:f(x)>0.
    [解] (1)函数f(x)的定义域为(0,+∞).
    f′(x)=aex-,由题意得f(1)=,f′(1)=-1,
    所以
    解得
    (2)证明:由(1)知f(x)=·ex-ln x.
    因为f′(x)=ex-2-在(0,+∞)上单调递增,又f′(1)<0,f′(2)>0,所以f′(x)=0在(0,+∞)上有唯一实根x0,且x0∈(1,2).
    当x∈(0,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,
    从而当x=x0时,f(x)取极小值,也是最小值.
    由f′(x0)=0,得ex0-2=,则x0-2=-ln x0.
    故f(x)≥f(x0)=ex0-2-ln x0=+x0-2>2-2=0,所以f(x)>0.
    考点2 双变量不等式的证明
     破解含双参不等式证明题的3个关键点
    (1)转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式.
    (2)巧构造函数,再借用导数,判断函数的单调性,从而求其最值.
    (3)回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.
     已知函数f(x)=ln x-ax(x>0),a为常数,若函数f(x)有两个零点x1,x2(x1≠x2).求证:x1x2>e2.
    [证明] 不妨设x1>x2>0,
    因为ln x1-ax1=0,ln x2-ax2=0,
    所以ln x1+ln x2=a(x1+x2),ln x1-ln x2=a(x1-x2),所以=a,
    欲证x1x2>e2,即证ln x1+ln x2>2.
    因为ln x1+ln x2=a(x1+x2),所以即证a>,
    所以原问题等价于证明>,
    即ln >,
    令c=(c>1),则不等式变为ln c>.
    令h(c)=ln c-,c>1,
    所以h′(c)=-=>0,
    所以h(c)在(1,+∞)上单调递增,
    所以h(c)>h(1)=ln 1-0=0,
    即ln c->0(c>1),因此原不等式x1x2>e2得证.
     换元法构造函数证明不等式的基本思路是直接消掉参数a,再结合所证问题,巧妙引入变量c=,从而构造相应的函数.其解题要点为:

    联立消参
    利用方程f(x1)=f(x2)消掉解析式中的参数a
    抓商构元
    令c=,消掉变量x1,x2构造关于c的函数h(c)
    用导求解
    利用导数求解函数h(c)的最小值,从而可证得结论
     已知函数f(x)=ln x-ax2+x,a∈R.
    (1)当a=0时,求函数f(x)的图象在(1,f(1))处的切线方程;
    (2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥.
    [解] (1)当a=0时,f(x)=ln x+x,则f(1)=1,所以切点为(1,1),又因为f′(x)=+1,所以切线斜率k=f′(1)=2,故切线方程为y-1=2(x-1),即2x-y-1=0.
    (2)证明:当a=-2时,f(x)=ln x+x2+x(x>0).
    由f(x1)+f(x2)+x1x2=0,
    得ln x1+x+x1+ln x2+x+x2+x1x2=0,
    从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
    令t=x1x2(t>0),令φ(t)=t-ln t,得φ′(t)=1-=,
    易知φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t)≥φ(1)=1,所以(x1+x2)2+(x1+x2)≥1,因为x1>0,x2>0,所以x1+x2≥成立.
    考点3 证明与正整数有关的不等式问题
     函数中与正整数有关的不等式,其实质是利用函数性质证明数列不等式,证明此类问题时常根据已知的函数不等式,用关于正整数n的不等式替代函数不等式中的自变量,通过多次求和达到证明的目的.
     若函数f(x)=ex-ax-1(a>0)在x=0处取极值.
    (1)求a的值,并判断该极值是函数的最大值还是最小值;
    (2)证明:1+++…+>ln(n+1)(n∈N*).
    [解] (1)因为x=0是函数极值点,所以f′(0)=0,所以a=1.
    f(x)=ex-x-1,易知f′(x)=ex-1.
    当x∈(0,+∞)时,f′(x)>0,
    当x∈(-∞,0)时,f′(x)<0,
    故极值f(0)是函数最小值.
    (2)证明:由(1)知ex≥x+1.
    即ln(x+1)≤x,当且仅当x=0时,等号成立,
    令x=(k∈N*),
    则>ln,即>ln ,
    所以>ln(1+k)-ln k(k=1,2,…,n),
    累加得1+++…+>ln(n+1)(n∈N*).
     已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),要注意指、对数式的互化,如ex≥x+1可化为ln(x+1)≤x等.
     已知函数f(x)=ln(x+1)+.
    (1)若x>0时,f(x)>1恒成立,求a的取值范围;
    (2)求证:ln(n+1)>++ +…+(n∈N*).
    [解] (1)由ln(x+1)+>1,得
    a>(x+2)-(x+2)ln(x+1).
    令g(x)=(x+2)[1-ln(x+1)],
    则g′(x)=1-ln(x+1)-=-ln(x+1)-.
    当x>0时,g′(x)<0,所以g(x)在(0,+∞)上单调递减.
    所以g(x)<g(0)=2,故a的取值范围为[2,+∞).
    (2)证明:由(1)知ln(x+1)+>1(x>0),
    所以ln(x+1)>.
    令x=(k>0),得ln>,
    即ln>.
    所以ln +ln +ln +…+ln >+++…+,
    即ln(n+1)>+++…+(n∈N*).

    课外素养提升③ 逻辑推理——用活两个经典不等式
    逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程.
    (1)对数形式:x≥1+ln x(x>0),当且仅当x=1时,等号成立.
    (2)指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+ln x(x>0,且x≠1).
    【例1】 (1)已知函数f(x)=,则y=f(x)的图象大致为(  )

    (2)已知函数f(x)=ex,x∈R.证明:曲线y=f(x)与曲线y=x2+x+1有唯一公共点.
    (1)B [因为f(x)的定义域为
    即{x|x>-1,且x≠0},所以排除选项D.
    当x>0时,由经典不等式x>1+ln x(x>0),
    以x+1代替x,得x>ln(x+1)(x>-1,且x≠0),
    所以ln(x+1)-x<0(x>-1,且x≠0),即x>0或-1<x<0时均有f(x)<0,排除A,C,易知B正确.]
    (2)证明:令g(x)=f(x)-=ex-x2-x-1,x∈R,
    则g′(x)=ex-x-1,
    由经典不等式ex≥x+1恒成立可知,g′(x)≥0恒成立,
    所以g(x)在R上为单调递增函数,且g(0)=0.
    所以函数g(x)有唯一零点,即两曲线有唯一公共点.
    【例2】 (2017·全国卷Ⅲ改编)已知函数f(x)=x-1-aln x.
    (1)若f(x)≥0,求a的值;
    (2)证明:对于任意正整数n,…<e.
    [解] (1)f(x)的定义域为(0,+∞),
    ①若a≤0,因为f=-+aln 2<0,所以不满足题意.
    ②若a>0,由f′(x)=1-=知,
    当x∈(0,a)时,f′(x)<0;
    当x∈(a,+∞)时,f′(x)>0;
    所以f(x)在(0,a)单调递减,在(a,+∞)单调递增,
    故x=a是f(x)在(0,+∞)的唯一最小值点.
    因为f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.
    (2)证明:由(1)知当x∈(1,+∞)时,x-1-ln x>0.
    令x=1+,得ln<.
    从而ln+ln+…+ln<++…+=1-<1.
    故…<e.
    【例3】 设函数f(x)=ln x-x+1.
    (1)讨论f(x)的单调性;
    (2)求证:当x∈(1,+∞)时,1<<x.
    [解] (1)由题设知,f(x)的定义域为(0,+∞),
    f′(x)=-1,令f′(x)=0,解得x=1.
    当0<x<1时,f′(x)>0,f(x)在(0,1)上单调递增;
    当x>1时,f′(x)<0,f(x)在(1,+∞)上单调递减.
    (2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.
    所以当x≠1时,ln x<x-1.
    故当x∈(1,+∞)时,ln x<x-1,>1. ①
    因此ln <-1,
    即ln x>,<x. ②
    故当x∈(1,+∞)时恒有1<<x.


    相关学案

    高考数学一轮复习第3章第4课时利用导数证明不等式学案: 这是一份高考数学一轮复习第3章第4课时利用导数证明不等式学案,共11页。

    2024届高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案: 这是一份2024届高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案,共11页。

    高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案: 这是一份高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案,共6页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022版江苏高考数学一轮复习讲义:第3章 第4节 利用导数证明不等式 Word版含答案学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map