2022年中考数学专题复习类型七 二次函数与直角三角形有关的问题(原卷版)
展开类型七 二次函数与直角三角形有关的问题
【典例1】如图,抛物线与轴交于,两点.
(1)若过点的直线是抛物线的对称轴.
①求抛物线的解析式;
②对称轴上是否存在一点,使点关于直线的对称点恰好落在对称轴上.若存在,请求出点的坐标;若不存在,请说明理由.
(2)当,时,函数值的最大值满足,求的取值范围.
【典例2】如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E.垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在移动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.
【答案】(1)y=-x2+3x+4,y=-x+4;(2);(3)存在,
【典例3】如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点.直线与抛物线交于,两点,与轴交于点,点的坐标为.
(1)请直接写出,两点的坐标及直线的函数表达式;
(2)若点是抛物线上的点,点的横坐标为,过点作轴,垂足为.与直线交于点,当点是线段的三等分点时,求点的坐标;
(3)若点是轴上的点,且,求点的坐标.
【典例4】如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)
2022年中考数学专题复习类型三 二次函数与面积有关的问题(原卷版): 这是一份2022年中考数学专题复习类型三 二次函数与面积有关的问题(原卷版),共6页。
2022年中考数学专题复习类型十一 二次函数与正方形有关的问题(原卷版): 这是一份2022年中考数学专题复习类型十一 二次函数与正方形有关的问题(原卷版),共7页。
2022年中考数学专题复习类型十 二次函数与矩形有关的问题(原卷版): 这是一份2022年中考数学专题复习类型十 二次函数与矩形有关的问题(原卷版),共6页。