所属成套资源:【暑期特供】(整合提优篇)人教版 六年级数学衔接精编讲义(原卷+解析)
【整合提优篇】人教版 六年级数学衔接精编试题 专题05《折线统计图》(解析)
展开
这是一份【整合提优篇】人教版 六年级数学衔接精编试题 专题05《折线统计图》(解析),共24页。试卷主要包含了是描述李阿姨整个锻炼过程的,看图并解答问题等内容,欢迎下载使用。
人教版数学五升六数学衔接讲义(整合提优)
专题05 折线统计图
试卷满分:100分 考试时间:100分钟
一.选择题(共6小题,满分6分,每小题1分)
1.(1分)淘淘和哥哥在家洗澡,热水器内装有250升水,他洗了6分钟,用了的水,然后停止洗澡;6分钟后,哥哥又去洗,他也洗了6分钟,把热水器内的水全部用完了。下面的第( )幅图表示了水量随时间发生变化放入过程。
A. B.C.D.
【思路引导】根据题意可知,将热水器中的水量看作单位“1”,淘淘用了水量的(250×),剩下的水是哥哥用去的,淘淘和哥哥共用去了(6+6)分钟,另为中间停止了6分钟,所以图中的时间应该是(6+6+6)分钟,列式解答再对照上图进行选择即可得到答案。
【完整解答】热水器内剩余水量为:250×=125(升)
时间为:6+6+6=18(分钟)
答:淘淘洗完澡水箱内的水量是125升,淘淘和哥哥都洗完澡所用的时间是18分钟。
故选:D。
2.(1分)星期天王叔叔和李叔叔两家自驾车去游玩.两辆车从同一地点同时出发,行至十字路口时,王叔叔的车刚刚驶过,红灯亮起,李叔叔只能停下.绿灯亮起时,李叔叔继续前行追赶王叔叔,结果李叔叔比王叔叔提前到达目的地与上述文字描述相吻合的图是( )
A.B. C.
【思路引导】根据题意和各个统计图中的图象,可以判断出哪个统计图中的图象与题目中的文字描述相吻合.
【完整解答】A统计图符合题意;
B统计图中李叔叔到达终点晚于王叔叔,与题目中果李叔叔比王叔叔提前到达目的地矛盾,故选项B不符合题意;
C统计图中刚开始李叔叔比王叔叔行驶的快,与题干中两辆车从同一地点同时出发,行至十字路口时,王叔叔的车刚刚驶过,红灯亮起,李叔叔只能停下矛盾,故选项C不符合题意;
故选:A.
3.(1分)学校教学楼有四层.六(1)班的同学第一节课到三楼上数学课,第二节课到二楼上美术课,第三节课到四楼上音乐课,第四节课回到三楼上语文课,中午到一楼食堂吃饭.下面哪一幅图比较准确地描述了这一过程?( )
A. B.C.
【思路引导】根据题意可知,六(1)班的同学第一节课到三楼,第二节课到二楼,第三节课到四楼,第四节课到三楼,可根据六(1)班的同学先后到达的楼层进行绘制单式折线统计图,然后再进行选择即可得到答案.
【完整解答】根据题意可知,六(1)班的同学第一节课到三楼,第二节课到二楼,第三节课到四楼,第四节课到三楼,则B比较准确地描述了这一过程.
故选:B.
4.(1分)李阿姨到离家400米的街心公园锻炼身体。她走到公园用时10分钟,在公园跳了30分钟的舞蹈,然后走回家,用时10分钟。下面图( )是描述李阿姨整个锻炼过程的。
A.B.C.
【思路引导】从李阿姨出去晨练时间段看,分为0﹣10分钟散步,10﹣40分钟在公园跳舞蹈,再步行10分钟返回家,按时间段把图象分为三段.据此解答即可。
【完整解答】依题意李阿姨出去晨练时间段看,0﹣10分钟从家到公园,离家越来越远;
10﹣40分钟在公园跳舞蹈,离家的距离不变;
再步行10分钟返回家,离家越来越近;
按时间段把图象分为三段。
由此可知,只有图A描述了李阿姨整个锻炼过程。
故选:A。
5.(1分)下面能够表示汽车由静止开始发动,加速到一定速度匀速行驶一段距离后减速上坡,再加速下坡,然后逐渐减速到匀速行驶的一个过程的是( )
A. B.
C. D.
【思路引导】由题意可知,这个过程一共有6个趋势。①汽车由静止开始发动,加速到一定速度,这时呈上升趋势;②加速到一定速度匀速行驶一段距离,这时呈平行趋势;③匀速行驶一段距离后减速,这时呈下降趋势;④再加速下坡,呈上升趋势;⑤然后逐渐减速,这时呈下降趋势;⑥最后匀速行驶,这时呈平行趋势,观察4个图,发现选项C能反映这个过程。
【完整解答】由分析可得,能够表示汽车由静止开始发动,加速到一定速度匀速行驶一段距离后减速上坡,再加速下坡,然后逐渐减速到匀速行驶的一个过程的是选项C。
故选:C。
6.(1分)小明到小军家去玩,当他走了大约一半路程时,想起要送小军邮票.于是他回家取邮票,然后再去小军家玩,玩了一会儿后回家.下面哪幅图反映了小明的行为?( )
A. B. C.
【思路引导】根据小军的行动,找出小军行走的路线,再由此选择比较合适的折线统计图即可.
【完整解答】离家的距离是随时间是这样变化的:
(1)先离家越来远,到了最远距离一半的时候;
(2)然后越来越近直到为0;
(3)到家拿邮票有一段时间,所以有一段时间离家的距离为0;
(4)然后再离家越来越远,直到小军家;
(5)在小军家玩了一会,所以离家最远的时候也是一条线段;
(6)然后回家直到离家的距离为0.
符合小军这段时间离家距离变化的是C.
故选:C.
二.填空题(共6小题,满分15分)
7.(2分)如图描述了一个游泳池进水管打开后的进水情况。
(1)这个进水管每分钟进水量是 10 立方米。
(2)这个进水管的进水量与时间成 正 比例关系。
(3)照这样的速度,如果给这个游泳池注水12分钟,能注水 120 立方米;如果要给这个游泳池注水600立方米,需要 1 小时。
【思路引导】(1)时间从0到5小时,共进水50立方米,用进水量除以时间即可;
(2)由图象可以发现,进水量除以时间是一个定值,符合正比例的判定;
(3)根据总量=速度×时间、时间=总量÷速度,代入计算即可。
【完整解答】(1)50÷(5﹣0)
=50÷5
=10(立方米/分钟)
答:这个进水管每分钟进水量是10立方米。
(2)由图象可以发现,进水量除以时间是一个定值,符合正比例的判定;
答:这个进水管的进水量与时间成正比例关系。
(3)12×10=120(立方米)
600÷10=60(分钟)
60分钟=1小时
答:如果给这个游泳池注水12分钟,能注水120立方米;如果要给这个游泳池注水600立方米,需要1小时。
故答案为:10;正;120,1。
8.(2分)看图并解答问题.
如图是小强和小刚两位同学参加800米赛跑的折线统计图.
(1)前400米,跑得快一些的是 小刚 ,比赛途中在 500 米处两人并列.
(2)跑完800米,先到达终点的是 小强 ,比另一位同学少用了 90 秒.
(3)小刚前2分钟平均每分钟跑 200 米.
【思路引导】(1)由表示小强、小刚跑的路程与时间的拆线可以看出,前400米小刚的比小强跑得快一些;到500米时小强追上了小刚,二人并列.
(2)跑完800米,小强先到达终点,用时4.5分钟,小刚后到达终点,用时6分钟.小强比小刚少用6﹣4.5=1.5分钟,再乘进率60化秒.
(3)小刚前2分钟跑了400米,根据“速度=路程÷时间”即可求出小刚前2分钟平均每分钟跑的米数.
【完整解答】(1)答:前400米,跑得快一些的是小刚,比赛途中在500米处两人并列.
(2)6﹣4.5=1.5(分)
1.5分=90秒
答:跑完800米,先到达终点的是小强,比另一位同学少用了90秒.
(3)400÷2=200(米)
答:小刚前2分钟平均每分钟跑200米.
故答案为:小刚,500,小强,90,200.
9.如图,表示小华骑车从家去图书馆借书的过程中,离家的距离与时间的变化关系。
(1)小华去图书馆路上停车 20 分,在图书馆借书用 40 分。
(2)从图书馆返回家中,速度是每小时 15 千米。
【思路引导】(1)离家距离不变时,说明小华没有移动,路上停车是20~40分之间,图书馆借书是60~100分之间,据此计算即可;
(2)总路程为5千米,时间为120﹣100=20(分),根据速度=路程÷时间计算即可,注意时间单位的换算。
【完整解答】(1)停车时间为:
40﹣20=20(分钟)
借书时间为:
100﹣60=40(分钟)
答:路上停车20分,在图书馆借书用40分。
(2)回家用时为:
120﹣100=20(分)
20分=小时
速度为:5÷=15(千米/小时)
答:从图书馆返回家中,速度是每小时15千米。
故答案为:20,40;15。
10.如图是同一车站发出的甲、乙两辆车行驶路程统计图。
(1) 乙 车是匀速行驶的平均每小时行 60 千米。
(2)甲车第二次追上乙车的时刻是 12时 。
(3)甲车在 10:00 ~ 12:00 这个时间段提速较快这段时间平均每小时行 100 千米。
【思路引导】(1)通过观察统计图可知,乙车匀速行驶,根据速度=路程÷时间,列式解答即可。
(2)甲车第二次追上乙车的时刻是12时。
(3)甲车在10时~12时提速较快,根据速度=路程÷时间,列式解答即可。
【完整解答】(1)12﹣8=4(小时)
240÷4=60(千米/时)
答:乙车匀速行驶,平均每小时行驶60千米。
(2)甲车第二次追上乙车的时刻是12时。
(3)12﹣10=2(小时)
(240﹣40)÷2
=200÷2
=100(千米/时)
答:甲车在10时~12时提速较快,这段时间平均每小时行100千米。
故答案为:乙、60;12时;10:00、12:00、100。
11.(2分)如图是一辆汽车从甲地到乙地,再从乙地返回到甲地的路程和时间的关系图,从图中可看出汽车在乙地停留了 15 分钟,汽车往返的平均速度是 64 千米/时。
【思路引导】通过观察统计图可知,从甲地到乙地用了25分钟,在乙地停留了15分钟,从乙地返回甲地用了20分钟,根据平均速度=往返的路程÷往返共用的时间,列式解答即可。
【完整解答】40﹣25=15(分钟)
25+20=45(分钟)
45分钟=小时
24×2÷
=48×
=64(千米/时)
答:汽车在乙地停留了15分钟,汽车往返的平均速度是64千米/时。
故答案为:15、64。
12.下面是A、B两市2019年上半年降水量情况统计图。观察统计图并回答问题。
(1) 3 月份两个城市的降水量最接近,相差 15 毫米。
(2)A市 5 月到 6 月降水量上升的最快,上升了 102 毫米。
(3)B市第一季度平均每月降水 24 毫升。
【思路引导】(1)通过观察统计图可知,3月份两个城市的降水量最接近,相差25﹣10=15(毫米)。
(2)A市5月到6月降水量上升的最快,上升了170﹣68=102(毫米)。
(3)根据求平均数的方法,先求出B市第一季度的总降水量,然后除以3即可。
【完整解答】(1)25﹣10=15(毫米)
答:3月份两个城市的降水量最接近,相差15毫米。
(2)170﹣68=102(毫米)
答:A市5月到6月降水量上升的最快,上升了102毫米。
(3)(52+10+10)÷3
=72÷3
=24(毫米)
答:B市第一季度平均每月降水24毫米。
故答案为:3、15;5、6、102;24。
三.判断题(共4小题,满分8分,每小题2分)
13.(2分)任意两个折线统计图都可以合成一个复式折线统计图. × (判断对错)
【思路引导】根据折线统计图的特点及作用,折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来;折线统计图不仅可以表示数量的多少,还能清楚地反映熟练的增减变化的趋势。据此判断。
【完整解答】任何一幅复式折线统计图都能分成两幅单式折线统计图,但是任意两个单式折线统计图不一定合成一个复式折线统计图,只有两个有联系的单式统计图才能合成一个复式统计图。
因此,任意两个折线统计图都可以合成一个复式折线统计图。这种说法是错误的。
故答案为:×。
14.(2分)折线统计图便于直观了解数据的大小及不同数据的差异. √ (判断对错)
【思路引导】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【完整解答】根据统计图的特点可知:
折线统计图便于直观了解数据的大小及不同数据的差异,所以本题说法正确;
故答案为:√.
15.(2分)折线统计图能清楚地反映数据的变化趋势,不能展示两组数据的差距. √ .(判断对错)
【思路引导】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【完整解答】根据统计图的特点可知:条形统计图更有利于对比数据,折线统计图能更清楚地反映数据的变化趋势.
故答案为:√.
16.(2分)在折线统计图中,折线越陡,变化越大. √ .(判断对错)
【思路引导】折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;由此解答即可.
【完整解答】在折线统计图中,线段越陡的说明气温变化越大.
所以原题说法正确.
故答案为:√.
四.应用题(共4小题,满分21分)
17.(5分)客车从A地开往B地,货车从B地开往A地,它们行驶的情况如图.
(1)观察如图,两车开出多少小时后相遇?
(2)货车每小时约行多少千米?
(3)客车在距B地多少千米的地方停留了多长时间?停留前后的速度相同吗?
(4)估一估:当货车到达A地时,客车距B地还有多少千米?按照它的行驶速度,到B地还需多少小时?
(5)假若客车不在途中停留,请你用你喜欢的方法求出两车开出多少小时后就能相遇.
【思路引导】(1)这两条线的交点就是两车相遇地点.由图知两车开出4.4小时后相遇;
(2)开出4小时后货车距离A地由500千米变为200千米,因此可以求出货车每小时行多少千米;
(3)2小时至3小时客车行驶路线是水平的,说明处于停留阶段.停留前后的两条线是平行的,可以得出停留前后速度相同;
(4)由图知,当货车到达A地时,客车距B地还有220千米,据此求出它到B地还需的时间;
(5)根据“路程÷速度和=相遇时间”做题.
【完整解答】(1)由图知,两车开出4.4小时后相遇.
(2)(500﹣200)÷4=75(千米)
答:货车每小时约行75千米.
(3)500﹣100=400(千米) 3﹣2=1(小时)
答:客车在距B地400千米的地方停留了1小时,由图知停留前后的速度相同.
(4)由图知,当货车到达A地时,客车距B地还有220千米.
220÷50=4.4(小时)
答:按照它的行驶速度,到B地还需4.4小时.
(5)500÷(50+75)=4(小时)
答:假如客车不在途中停留,两车开出4小时后就能相遇.
18.(6分)学校气象小组把某星期各天的最高气温和最低气温制成下面统计图。
(1)这个星期的最高气温从星期 二 到星期 四 保持不变。
(2)星期 四 的最高气温与最低气温相差最大,星期 六 的最高气温与最低气温相差最小。
(3)这个星期的日平均最低气温是 26.6 ℃。(得数保留一位小数)
【思路引导】根据统计图完成题目填空,注意横轴和纵轴要一一对应。
【完整解答】根据统计图显示:
(1)这个星期的最高气温从星期二到星期四保持不变。
故答案为:二,四
(2)星期四的最高气温与最低气温相差最大,星期六的最高气温与最低气温相差最小。
故答案为:四,六
(3)这个星期的日平均最低气温是26.6℃。(得数保留一位小数)
故答案为:26.6℃。
19.(4分)为了让学生更直观地了解禁毒知识,认识到毒品对人类的危害,我县一直在组织学生参与观看禁毒宣传影片等活动.下面是我县甲、乙两所学校一到六年级2019年观看禁毒宣传影片的人数统计情况,请看图并回答问题.
单位:人
(1)甲校一年级参加观看禁毒影片的人数是多少?乙校五年级参加观看禁毒影片的人数是多少?
(2)甲、乙两校参加观看禁毒影片的人数各是多少?乙校人数是甲校人数的几分之几?
【思路引导】(1)通过观察统计图可知,甲校一年级参加观看禁毒影片的人数是287人,乙校五年级参加观看禁毒影片的人数是197人。
(2)根据加法的意义,把甲、乙两校观看看禁毒影片的各年级人数分别合并起来,再根据求一个数是另一个数的几分之几,用除法解答。
【完整解答】(1)甲校一年级参加观看禁毒影片的人数是287人,乙校五年级参加观看禁毒影片的人数是197人。
(2)甲校:287+311+276+289+324+313=1800(人)
乙校:203+182+225+175+197+218=1200(人)
1200÷1800=
答:甲校参加观看禁毒影片的人数是1800人,乙校参加观看禁毒影片的人数是1200人,乙校人数是甲校人数的。
20.(6分)某市甲,乙两所学校学生参加课外活动情况统计图如下.
(1)哪﹣年两校参加课外活动的人数相差最多?相差多少人?
(2)两校参加课外活动的人数逐年增加,请你估计一下2016年甲校参加课外活动的有多少人,乙校参加课外活动的有多少人?
(3)甲校参加课外活动的人数在哪个时间段上升最多?
【思路引导】(1)通过观察统计图可知,2015年两校参加课外活动的人数相差最多,根据求一个数比另一个多或少几,用减法解答.
(2)根据甲校2015年比2014年增加700人,由此可以预测2016年甲校参加课外活动的人数约有2800人;根据乙校2015年比2014年增加250人,由此可以预测2016年乙校参加课外活动的人数约有1500人.
(3)通过观察统计图可知,甲校参加课外活动的人数在2015年上升最多.据此解答.
【完整解答】(1)2000﹣1250=750(人)
答:2015年两校参加课外活动的人数相差最多,相差750人.
(2)根据两校参加课外活动的人数逐年增加的人数,我估计2016年甲校参加课外活动的人数约有2800人;乙校参加课外活动的人数约有1500人.
(3)甲校参加课外活动的人数在2015年上升最多.
五.操作题(共3小题,满分13分)
21.(4分)下面是小莉和小明两名同学5次踢毽情况的统计表.
小莉和小明5次踢毽情况统计表
2016年5月
次数
第1次
第2次
第3次
第4次
第5次
小莉踢毽个数
12
13
25
20
30
小明踢毽个数
15
13
20
27
30
(1)根据统计表的数据,完成下面的折线统计图.
(2)小莉、小明平均每次各踢多少个?
【思路引导】(1)根据折线统计图的绘制的方法,按照统计表中的数据先分别描出各点然后顺次连接各点即可.
(2)根据求平均的方法,分别用小莉、小明5次踢的总数除以5即可.
【完整解答】(1)作图如下:
(2)(12+13+25+20+30)÷5
=100÷5
=20(个)
(15+13+20+27+30)÷5
=105÷5
=21(个)
答:小莉平均每次踢20个,小明平均每次踢21个.
22.(5分)下面是李红和刘明两人校运会上800米赛跑行程图,看图回答问题.
(1)跑完全程李红用了 3 分钟.
(2)李红到达终点后,刘明再跑 1 分钟才到达终点.
(3)李红平均每分钟跑 米,刘明平均每分钟跑 200 米.
(4) 3 分钟后,两人相距200米.
【思路引导】(1)通过统计图观察可知,李红跑完全程用了3分钟;
(2)李红到达终点后,刘明再跑4﹣3=1分钟才能到达终点;
(3)运用路程除以时间即可求出李红和刘明的速度;
(4)运用路程除以速度差即可求出几分钟后两人相距200米.
【完整解答】(1)通过统计图观察可知,李红跑完全程用了3分钟,
(2)4﹣3=1(分钟);
答:李红到达终点后,刘明再跑2分钟才能到达终点;
(3)800÷3=(米),
800÷4=200(米),
答:李红的平均速度是米,刘明的平均速度是200米.
(4)200÷(﹣200)=3(分钟);
答:3分钟后两人相距200米.
故答案为:(1)3;(2)1;(3)266,200;(4)3.
23.(4分)东风小学学生参加象棋比赛人数统计如图.
(1)参加比赛的男生共有 66 人,女生共有 40 人.
(2)男生参加比赛的人数占全部人数的 ,女生参加比赛的人数占全部人数的 .
【思路引导】(1)用各年级参加象棋比赛男生人数相加即可得参加比赛的男生人数;用各年级参加象棋比赛女生人数相加即可得参加比赛的女生人数
(2)用男生的人数除以全部的人数,求出男生参加比赛的人数占全部人数的分率即可,用1减去男生占的分率,求出女生参加比赛的人数占全部人数的分率即可.
【完整解答】(1)4+6+8+13+17+18
=18+13+17+18
=48+18
=66(人),
2+3+5+8+10+12
=18+10+12
=28+12
=40(人),
答:参加比赛的男生共有66人,女生共有40人;
(2)66÷(66+40)
=66÷106
=,
1﹣=,
答:男生参加比赛的人数占全部人数的,女生参加比赛的人数占全部人数的.
故答案为:(1)66,40;(2),.
六.解答题(共8小题,满分37分)
24.(6分)图1和图2是去年下半年某商场服装专柜售货员分别根据毛衣和衬衣销售量制成的两幅折线统计图,请回答以下问题。
(1)图 1 是毛衣销量统计图,图 2 是衬衣销量统计图。
(2)请你简单描述一下这两种衣服销售量的变化情况。
(3)如果你是销售经理,你在进货方面有什么考虑?
【思路引导】(1)随着天气变冷,毛衣的销量会增加,衬衣的销量会减少,据此解答;
(2)根据线段的变化情况,作出描述即可;
(3)根据两种衣服的销量做出合理的安排即可。
【完整解答】(1)随着天气变冷,毛衣的销量会增加,衬衣的销量会减少,
所以,图1是毛衣的销量统计图,图2是衬衣的销量统计图。
(2)从七月开始,毛衣的销量逐步提高,到12月时有所回落;
从七月开始,衬衣的销量一直减少。
(3)根据两种衣服的销量变化,从七月开始,逐步减少衬衣的进货量,逐步增加毛衣的进货量。(合理即可)
故答案为:1,2。
25.(4分)小明骑车从家里出发去图书馆,借书后直接回家.下图表示在这段时间里小明离家的路程变化情况.
(1)小明在图书馆停留了 60 分钟.
(2)小明家距离图书馆 5 千米.
(3)小明从图书馆回家时平均每分钟行多少千米?
【思路引导】(1)小明在图书馆待的时间是从60分钟到120分钟,即待了120﹣60=60(分钟)。
(2)从图中可知,从家一共走了5千米,所以小明家距离图书馆5千米。
(3)因为是要求回家时速度,所以路程5千米除以回家时用的时间即可解决问题。
【完整解答】(1)120﹣60=60(分钟)
答:小明在图书馆停留了60分钟.
(2)小明家距离图书馆5千米。
(3)5÷(140﹣120)
=5÷20
=0.25(千米)
答:小明从图书馆回家时平均每分钟行0.25千米。
故答案为:60;5。
26.(4分)如图是小雷和小涛跳高比赛前7天的训练成绩情况统计图.
(1)小雷和小涛第1天的成绩相差 5 厘米,第7天的成绩相差 0 厘米.
(2)小雷和小涛的成绩呈什么变化趋势,谁的进步幅度大?
【思路引导】(1)根据求一个数比另一个多或几,用减法解答。
(2)从总体来看小雷和小涛的成绩都呈上升趋势,小涛的进步幅度大。据此解答。
【完整解答】(1)90﹣85=5(厘米)
110﹣110=0(厘米)
答:小雷和小涛第1天的成绩相差5厘米,第7天的成绩相差0厘米。
(2)由于第一天小涛的成绩低于小雷的成绩,第七天的成绩相同,小雷和小涛的成绩都呈上升趋势,所以小涛的进步幅度大。
故答案为:5、0。
27.(5分)根据如图甲、乙两车的行程图回答问题。
(1)甲车每小时行 54 千米。
(2)甲、乙两车速度的最简整数比是 6 : 5 。
(3)甲、乙两车8:00从同一地点出发,同向而行小时后,两车相距多少千米?
【思路引导】(1)甲车的速度=路程÷时间。
(2)甲车的速度第一问已知,乙车的速度=路程÷时间,然后甲车速度:乙车速度,化简比即可。
(3)(甲的速度-乙的速度)×时间=两车相距的路程。
【完整解答】(1)9时40分-8时=1小时40分
1时40分=时
90÷=54(km/h)
所以甲车每小时行54千米。
(2)90÷(10﹣8)
=90÷2
=45(千米)
54:45=6:5
所以甲、乙两车速度的最简整数比是6:5。
(3)×(54﹣45)
=×9
=6.75(千米)
答:两车相距6.75千米。
故答案为:54;6,5。
28.(5分)下面两幅图反映的是在疫情线上学习期间,李红、陈伟两位同学每天在家学习的时间分配情况和阶段性检测的成绩提高情况。
(1)李红、陈伟两人每天在家学习的时间分别是 80 分钟和 60 分钟。
(2)李红五次检测的平均成绩是多少?
(3)李红、陈伟第五次测试的成绩比第一次分别提高了百分之几?(%前面保留一位小数)
(4)谁的成绩提高更快些?可能原因是什么?
【思路引导】(1)根据加法的意义,用加法把李红、陈伟在家看书、思考、做题、交流的时间分别合并起来即可。
(2)根据求平均数的方法,先求出李红五次检测的总成绩,然后除以5就是五次检测的平均成绩。
(3)把李红第一次的成绩看作单位“1”,先求出第五次的成绩比第一次增加多少分,然后根据百分数的意义解答;把陈伟第一次的成绩看作单位“1”,先求出第五次的成绩比第一次增加多少分,然后根据百分数的意义解答。
(4)从折线统计图可以直接看出李红的成绩提高较快,李红的看书时间是20分钟,陈伟的看书时间是5分钟,李红的思考时间多,而且他还善于看书,思考时间是10分钟,而陈伟只有5分钟,所以李红成绩提高快的原因主要是他善于看书、思考。据此解答即可。
【完整解答】李红:20+30+20+10=80(分钟)
陈伟:20+5+30+5=60(分钟)
答:李红每天在家学习的时间是80分钟,陈伟每天在家学习的时间是60分钟。
(2)(75+83+87+90+96)÷5
=431÷5
=86.2(分)
答:李红五次检测的平均成绩是86.2分。
(3)(96﹣75)÷75
=21÷75
=0.28
=28%
(85﹣70)÷70
=15÷70
≈0.214
=21.4%
答:李红第五次测试的成绩比第一次分别提高了28%,陈伟第五次测试的成绩比第一次分别提高了21.4%。
(4)李红成绩提高更快些,可能原因是是他善于看书、思考。
故答案为:80、60。
29.(4分)根据下面统计图回答问题.
(1)明明和亮亮第 4 次跳远成绩相差最多,相差 0.7 米.
(2)从这两名同学中选一名参加跳远比赛,你推荐谁去?结合统计图说明理由.
【思路引导】(1)明明和亮亮第4次跳远成绩相差最多,根据求一个数比另一个数多几,用减法解答.
(2)明明的成绩起伏较大,不稳定,亮亮的成绩呈逐渐上升的趋势,我推荐亮亮去参加比赛.据此解答.
【完整解答】(1)3.2﹣2.5=0.7(米)
答:明明和亮亮第4次跳远成绩相差最多,相差0.7米.
(2)明明的成绩起伏较大,不稳定,亮亮的成绩呈逐渐上升的趋势,我推荐亮亮去参加比赛.(答案不唯一.)
故答案为:4,0.7.
30.(5分)下面是五(1)班周阳(男)和赵娟(女)两位同学6~12岁的身高统计图.
看图回答下面问题:
(1)9岁时,周阳比赵娟高 2 厘米;
(2) 10 岁时,周阳和赵娟一样高;
(3) 12 岁时,周阳比赵娟矮3厘米;
(4)观察上表数据,你发现男生和女生的身高随着年龄的增长有什么变化规律?
【思路引导】(1)观图可知:9岁时,周阳比赵娟高厘米;
(2)两条折线相交的点对应的年龄是两人身高相同的年龄;即10岁时,周阳和赵娟一样高;
(3)12岁时,周阳比赵娟矮3厘米;
(4)我发现男生和女生的身高随着年龄的增长而增长,10岁前女孩的身高高于男孩,10岁后男孩和升高高于女孩.
【完整解答】(1)9岁时,周阳比赵娟高2厘米;
(2)10岁时,周阳和赵娟一样高;
(3)12岁时,周阳比赵娟矮3厘米;
(4)我发现男生和女生的身高随着年龄的增长而增长,10岁前女孩的身高高于男孩,10岁后男孩和升高高于女孩.
故答案为:2、10、12.
31.(4分)如图是张叔叔家开的A、B两家水果店去年1~7月营业额统计图.
(1)第一季度,哪个店的营业额多一些?多多少?
(2)由于市场不景气,张叔叔要关闭其中一家店,但不知道关闭哪家好.你能为张叔叔提出合理的建议吗?请把你的建议写下来.
【思路引导】(1)分别把两店1、2、3月的营业额相加,比较后,相减即可;
(2)建议张叔叔关闭A店腾出资金,因为A店营业额增长不大,而B店经营状况越来越好.
【完整解答】(1)A店:2500+2800+2200
=5300+2200
=7500(元)
B店:2000+2400+2600
=4400+2600
=7000(元)
7500>7000
7500﹣7000=500(元),
答:第一季度,A店的营业额多一些,多500元.
(2)建议张叔叔关闭A店腾出资金,因为A店营业额增长不大,而B店经营状况越来越好
相关试卷
这是一份人教版小升初数学衔接精编讲义【整合提优篇】专题09《数学思考》(原卷版+解析),共28页。试卷主要包含了根据规律算一算,个白色小正方形,用小棒按照如图方式摆图形,(2023春•姜堰区期中)算式等内容,欢迎下载使用。
这是一份人教版小升初数学衔接精编讲义【整合提优篇】专题08《统计与概率》(原卷版+解析),共27页。试卷主要包含了图准确地表示了这一结果,小亚一周折千纸鹤的情况如下表,箱中摸最公平等内容,欢迎下载使用。
这是一份人教版小升初数学衔接精编讲义【整合提优篇】专题05《图形与几何-图形的认识与测量》(原卷版+解析),共17页。试卷主要包含了三角形,分米的长方体框架等内容,欢迎下载使用。