专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】
展开2020年中考数学真题分项汇编(全国通用)
专题30函数与几何综合问题【共30题】
一.解答题(共30小题)
1.(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当n=1时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
【分析】(1)①把n=1代入确定出B的坐标,利用待定系数法求出线段AB所在直线的解析式即可;
②若n=1,完全同意小明的说法,求出正确k的最大值与最小值即可;
(2)若小明的说法完全正确,把A与B坐标代入反比例解析式,并列出不等式,求出解集即可确定出n的范围.
【解析】(1)①当n=1时,B(5,1),
设线段AB所在直线的函数表达式为y=kx+b,
把A(1,2)和B(5,1)代入得:k+b=25k+b=1,
解得:k=-14b=94,
则线段AB所在直线的函数表达式为y=-14x+94;
②不完全同意小明的说法,理由为:
k=xy=x(-14x+94)=-14(x-92)2+8116,
∵1≤x≤5,
∴当x=1时,kmin=2;
当x=92时,kmax=8116,
则不完全同意;
(2)当n=2时,A(1,2),B(5,2),符合;
当n≠2时,y=n-24x+10-n4,
k=x(n-24x+10-n4)=n-24(x-n-102n-4)2+(10-n)216(2-n),
先增大当x取92时,k为8116,为最大,到B为5时减小,
即在直线上A到x=92时增大,到5时减小,
当92<x≤5时,k在减小,
当n<2时,k随x的增大而增大,则有n-102n-4≥5,
此时109≤n<2;
当n>2时,k随x的增大而增大,则有n-102n-4≤1,
此时n>2,
综上,n≥109.
2.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.
(1)用含x的代数式表示AD的长;
(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.
【分析】(1)由平行线分线段成比例定理,用x表示CD,进而求得结果;
(2)根据三角形的面积公式列出函数解析式,再根据函数性质求出S随x增大而减小时x的取值范围.
【解析】(1)∵PD∥AB,
∴CPCB=CDCA,
∵AC=3,BC=4,CP=x,
∴x4=CD3,
∴CD=34x,
∴AD=AC﹣CD=3-34x,
即AD=-34x+3;
(2)根据题意得,S=12AD⋅CP=12x(-34x+3)=-38(x-2)2+32,
∴当x≥2时,S随x的增大而减小,
∵0<x<4,
∴当S随x增大而减小时x的取值范围为2≤x<4.
3.(2020•滨州)如图,在平面直角坐标系中,直线y=-12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.
(1)求交点P的坐标;
(2)求△PAB的面积;
(3)请把图象中直线y=﹣2x+2在直线y=-12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.
【分析】(1)解析式联立,解方程组即可求得交点P的坐标;
(2)求得A、B的坐标,然后根据三角形面积公式求得即可;
(3)根据图象求得即可.
【解析】(1)由y=-12x-1y=-2x+2解得x=2y=-2,
∴P(2,﹣2);
(2)直线y=-12x﹣1与直线y=﹣2x+2中,令y=0,则-12x﹣1=0与﹣2x+2=0,
解得x=﹣2与x=1,
∴A(﹣2,0),B(1,0),
∴AB=3,
∴S△PAB=12AB⋅|yP|=12×3×2=3;
(3)如图所示:
自变量x的取值范围是x<2.
4.(2020•襄阳)如图,反比例函数y1=mx(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).
(1)m= 4 ,n= 2 ;
(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;
(3)若点P是反比例函数y1=mx(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 2 .
【分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;
(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;
(3)根据反比例函数系数k的几何意义即可求得.
【解析】(1)∵把A(1,4)代入y1=mx(x>0)得:m=1×4=4,
∴y=4x,
∵把B(n,2)代入y=4x得:2=4n,
解得n=2;
故答案为4,2;
(2)把A(1,4)、B(2,2)代入y2=kx+b得:k+b=42k+b=2,
解得:k=﹣2,b=6,
即一次函数的解析式是y=﹣2x+6.
由图象可知:y1<y2时x的取值范围是1<x<2;
(3)∵点P是反比例函数y1=mx(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,
∴S△POM=12|m|=12×4=2,
故答案为2.
5.(2020•连云港)如图,在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(4,32),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.
(1)m= 6 ,点C的坐标为 (2,0) ;
(2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.
【分析】(1)根据待定系数法即可求得m的值,根据A点的坐标即可求得C的坐标;
(2)根据待定系数法求得直线AB的解析式,设出D、E的坐标,然后根据三角形面积公式得到S△ODE=-38(x﹣1)2+278,由二次函数的性质即可求得结论.
【解析】(1)∵反比例函数y=mx(x>0)的图象经过点A(4,32),
∴m=4×32=6,
∵AB交x轴于点C,C为线段AB的中点.
∴C(2,0);
故答案为6,(2,0);
(2)设直线AB的解析式为y=kx+b,
把A(4,32),C(2,0)代入得4k+b=322k+b=0,解得k=34b=-32,
∴直线AB的解析式为y=34x-32;
∵点D为线段AB上的一个动点,
∴设D(x,34x-32)(0<x≤4),
∵DE∥y轴,
∴E(x,6x),
∴S△ODE=12x•(6x-34x+32)=-38x2+34x+3=-38(x﹣1)2+278,
∴当x=1时,△ODE的面积的最大值为278.
6.(2020•遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.
(1)求双曲线y=kx(k≠0)和直线DE的解析式.
(2)求△DEC的面积.
【分析】(1)作DM⊥y轴于M,通过证得△AOB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=kx(k≠0)和直线DE的解析式.
(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.
【解析】∵点A的坐标为(0,2),点B的坐标为(1,0),
∴OA=2,OB=1,
作DM⊥y轴于M,
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
∴∠OAB+∠DAM=90°,
∵∠OAB+∠ABO=90°,
∴∠DAM=∠ABO,
在△AOB和△DMA中
∠ABO=∠DAM∠AOB=∠DMA=90°AB=DA,
∴△AOB≌△DMA(AAS),
∴AM=OB=1,DM=OA=2,
∴D(2,3),
∵双曲线y═kx(k≠0)经过D点,
∴k=2×3=6,
∴双曲线为y=6x,
设直线DE的解析式为y=mx+n,
把B(1,0),D(2,3)代入得m+n=02m+n=3,解得m=3n=-3,
∴直线DE的解析式为y=3x﹣3;
(2)连接AC,交BD于N,
∵四边形ABCD是正方形,
∴BD垂直平分AC,AC=BD,
解y=3x-3y=6x得x=2y=3或x=-1y=-6,
∴E(﹣1,﹣6),
∵B(1,0),D(2,3),
∴DE=(2+1)2+(3+6)2=310,DB=(2-1)2+32=10,
∴CN=12BD=102,
∴S△DEC=12DE•CN=12×310×102=152.
7.(2020•牡丹江)如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是方程x2﹣7x﹣18=0的一个根,OB=12OA.请解答下列问题:
(1)求点A,B的坐标;
(2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反比例函数y=kx图象的一支经过点C,求k的值;
(3)在(2)的条件下,过点C作CD⊥OE,垂足为D,点M在直线AB上,点N在直线CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
【分析】(1)解一元二次方程,得到点A的坐标,再根据OB=12OA可得点B坐标;
(2)利用待定系数法求出直线AB的表达式,根据点C是EF的中点,得到点C横坐标,代入可得点C坐标,根据点C在反比例函数图象上求出k值;
(3)画出图形,可得点P共有5个位置,分别求解即可.
【解析】(1)∵线段 的长是方程 的一个根,
解得:x=9或﹣2(舍),而点A在x轴正半轴,
∴A(9,0),
∵OB=12OA,
∴B(0,92),
(2)∵OE=6,
∴E(﹣6,0),
设直线AB的表达式为y=kx+b,将点A和B的坐标代入,
得:0=9k+b92=b,解得:k=-12b=92,
∴AB的表达式为:y=-12x+92,
∵点C是EF的中点,
∴点C的横坐标为﹣3,代入AB中,y=6,
则C(﹣3,6),
∵反比例函数y=kx经过点C,
则k=﹣3×6=﹣18;
(3)存在点P,使以D,M,N,P为顶点的四边形是正方形,
如图,共有5种情况,
在四边形DM1P1N1中,
M1和点A重合,
∴M1(9,0),
此时P1(9,12);
在四边形DP3BN3中,点B和M重合,
可知M在直线y=x+3上,
联立:y=x+3y=-12x+92,
解得:x=1y=4,
∴M(1,4),
∴P3(1,0),
同理可得:P2(9,﹣12),P4(﹣7,4),P5(﹣15,0).
故存在点P使以D,M,N,P为顶点的四边形是正方形,
点P的坐标为P1(9,12),P2(9,﹣12),P3(1,0),P4(﹣7,4),P5(﹣15,0).
8.(2020•广元)如图所示,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(3,4),B(n,﹣1).
(1)求反比例函数和一次函数的解析式;
(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标;
(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
【分析】(1)先把A点坐标代入反比例函数解析式求得反比例函数的解析,再把B点坐标代入所求得的反比例函数的解析式,求得B点坐标,最后用待定系数法求出一次函数的解析式便可;
(2)分三种情况:OA=OC,AO=AC,CA=CO,分别求解即可;
(3)根据图象得出一次函数图象在反比例函数图象上方时x的取值范围即可.
【解析】(1)把A(3,4)代入y=mx,
∴m=12,
∴反比例函数是y=12x;
把B(n,﹣1)代入y=12x得n=﹣12.
把A(3,4)、B(﹣12,﹣1)分别代入y=kx+b中,
得3k+b=4-12k+b=-1,
解得k=13b=3,
∴一次函数的解析式为y=13x+3;
(2)∵A(3,4),
∴OA=32+42=5,
∵△AOC为等腰三角形,
分三种情况:
①当OA=OC时,OC=5,
此时点C的坐标为(5,0),(﹣5,0);
②当AO=AC时,∵A(3,4),点C和点O关于过A点且垂直于x轴的直线对称,
此时点C的坐标为(6,0);
③当CA=CO时,点C在线段OA的垂直平分线上,
过A作AD⊥x轴,垂足为D,
由题意可得:OD=3,AD=4,AO=5,设OC=x,则AC=x,
在△ACD中,42+(x﹣3)2=x2,
解得:x=256,
此时点C的坐标为(256,0);
综上:点C的坐标为:(6,0),(5,0),(256,0),(﹣5,0);
(3)由图得:
当一次函数图象在反比例函数图象上方时,
﹣12<x<0或x>3,
即使一次函数的值大于反比例函数的值的x的取值范围是:﹣12<x<0或x>3.
9.(2020•常州)如图,正比例函数y=kx的图象与反比例函数y=8x(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.
(1)求a的值及正比例函数y=kx的表达式;
(2)若BD=10,求△ACD的面积.
【分析】(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;
(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.
【解析】(1)把点A(a,4)代入反比例函数y=8x(x>0)得,
a=84=2,
∴点A(2,4),代入y=kx得,k=2,
∴正比例函数的关系式为y=2x,
答:a=2,正比例函数的关系式为y=2x;
(2)当BD=10=y时,代入y=2x得,x=5,
∴OB=5,
当x=5代入y=8x得,y=85,即BC=85,
∴CD=BD﹣BC=10-85=425,
∴S△ACD=12×425×(5﹣2)=12.6,
10.(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=2|x|的图象与性质共探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是x与y的几组对应值,其中m= 1 ;
x
…
﹣3
﹣2
﹣1
-12
12
1
2
3
…
y
…
23
1
2
4
4
2
m
23
…
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① 函数的图象关于y轴对称 ;
② 当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小 ;
(3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC= 4 ;
②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC= 4 ;
③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC= 2k .
【分析】(1)根据表格中的数据的变化规律得出当x<0时,xy=﹣2,而当x>0时,xy=2,求出m的值;补全图象;
(2)根据(1)中的图象,得出两条图象的性质;
(3)由图象的对称性,和四边形的面积与k的关系,得出答案.
【解析】(1)当x<0时,xy=﹣2,而当x>0时,xy=2,
∴m=1,
故答案为:1;补全图象如图所示:
(2)故答案为:①函数的图象关于y轴对称,②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;
(3)如图,①由A,B两点关于y轴对称,由题意可得四边形OABC是平行四边形,且S四边形OABC=4S△OAM=4×12|k|=2|k|=4,
②同①可知:S四边形OABC=2|k|=4,
③S四边形OABC=2|k|=2k,
故答案为:4,4,2k.
11.(2020•攀枝花)如图,过直线y=kx+12上一点P作PD⊥x轴于点D,线段PD交函数y=mx(x>0)的图象于点C,点C为线段PD的中点,点C关于直线y=x的对称点C'的坐标为(1,3).
(1)求k、m的值;
(2)求直线y=kx+12与函数y=mx(x>0)图象的交点坐标;
(3)直接写出不等式mx>kx+12(x>0)的解集.
【分析】(1)根据点C′在反比例函数图象上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;
(2)将两个函数表达式联立,得到一元二次方程,求解即可;
(3)根据(2)中交点坐标,结合图象得出结果.
【解析】(1)∵C′的坐标为(1,3),
代入y=mx(x>0)中,
得:m=1×3=3,
∵C和C′关于直线y=x对称,
∴点C的坐标为(3,1),
∵点C为PD中点,
∴点P(3,2),
将点P代入y=kx+12,
∴解得:k=12;
∴k和m的值分别为:3,12;
(2)联立:y=12x+12y=3x,得:x2+x﹣6=0,
解得:x1=2,x2=﹣3(舍),
∴直线y=kx+12与函数y=mx(x>0)图象的交点坐标为(2,32);
(3)∵两个函数的交点为:(2,32),
由图象可知:当0<x<2时,反比例函数图象在一次函数图象上面,
∴不等式mx>kx+12(x>0)的解集为:0<x<2.
12.(2020•岳阳)如图,一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.
(1)求反比例函数的表达式;
(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=kx的图象有且只有一个交点,求b的值.
【分析】(1)根据一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),可得m=4,进而可求反比例函数的表达式;
(2)根据一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),可得y=x+5﹣b,根据平移后的图象与反比例函数y=kx的图象有且只有一个交点,联立方程根据判别式=0即可求出b的值.
【解析】(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),
∴m=4,
∴k=﹣1×4=﹣4,
∴反比例函数解析式为:y=-4x;
(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),
∴y=x+5﹣b,
∵平移后的图象与反比例函数y=kx的图象有且只有一个交点,
∴x+5﹣b=-4x,
∴x2+(5﹣b)x+4=0,
∵△=(5﹣b)2﹣16=0,
解得b=9或1,
答:b的值为9或1.
13.(2020•江西)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=22.
(1)求反比例函数的解析式;
(2)求∠EOD的度数.
【分析】(1)根据题意求得A(2,2),然后代入y=kx(x>0),求得k的值,即可求得反比例函数的解析式;
(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.
【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
∴△AOD是等腰直角三角形,
∵OA=22,
∴OD=AD=2,
∴A(2,2),
∵顶点A在反比例函数y=kx(x>0)的图象上,
∴k=2×2=4,
∴反比例函数的解析式为y=4x;
(2)∵AB=2OA,点E恰为AB的中点,
∴OA=AE,
∵Rt△ABC中,∠ACB=90°,
∴CE=AE=BE,
∴∠AOE=∠AEO,∠ECB=∠EBC,
∵∠AEO=∠ECB+∠EBC=2∠EBC,
∵BC∥x轴,
∴∠EOD=∠ECB,
∴∠AOE=2∠EOD,
∵∠AOD=45°,
∴∠EOD=15°.
14.(2020•泰安)如图,已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(3,a),点B(14﹣2a,2).
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.
【分析】(1)点A(3,a),点B(14﹣2a,2)在反比例函数上,则3×a=(14﹣2a)×2,即可求解;
(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=-23x+6,则点C(0,6),故OC=6,进而求解.
【解析】(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,
∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,
故反比例函数的表达式为:y=12x;
(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),
设直线AB的表达式为:y=kx+b,则4=3k+b2=6k+6,解得k=-23b=6,
故一次函数的表达式为:y=-23x+6;
当x=0时,y=6,故点C(0,6),故OC=6,
而点D为点C关于原点O的对称点,则CD=2OC=12,
△ACD的面积=12×CD•xA=12×12×3=18.
15.(2020•枣庄)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.
【分析】(1)联立y=12x+5①和y=﹣2x并解得:x=-2y=4,故点A(﹣2.4),进而求解;
(2)S△AOB=S△AOC﹣S△BOC=12×OC•AM-12OC•BN,即可求解.
【解析】(1)联立y=12x+5①和y=﹣2x并解得:x=-2y=4,故点A(﹣2.4),
将点A的坐标代入反比例函数表达式得:4=k-2,解得:k=﹣8,
故反比例函数表达式为:y=-8x②;
(2)联立①②并解得:x=﹣2或﹣8,
当x=﹣8时,y=12x+5=1,故点B(﹣8,1),
设y=12x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,
则S△AOB=S△AOC﹣S△BOC=12×OC•AM-12OC•BN=12×4×10-12×10×1=15.
16.(2020•徐州)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=mx(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.
(1)求一次函数和反比例函数的表达式;
(2)求△DPQ面积的最大值.
【分析】(1)由A(0,﹣4)、B(2,0)的坐标可求出一次函数的关系式,进而求出点C的坐标,确定反比例函数的关系式;
(2)根据题意,要使三角形PDQ的面积最大,可用点P的横坐标n,表示三角形PDQ的面积,依据二次函数的最大值的计算方法求出结果即可.
【解析】(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,
b=-42k+b=0,解得,k=2b=-4,
∴一次函数的关系式为y=2x﹣4,
当x=3时,y=2×3﹣4=2,
∴点C(3,2),
∵点C在反比例函数的图象上,
∴k=3×2=6,
∴反比例函数的关系式为y=6x,
答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=6x;
(2)点P在反比例函数的图象上,点Q在一次函数的图象上,
∴点P(n,6n),点Q(n,2n﹣4),
∴PQ=6n-(2n﹣4),
∴S△PDQ=12n[6n-(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,
∴当n=1时,S最大=4,
答:△DPQ面积的最大值是4.
17.(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.
(1)分别求出a和b的值;
(2)结合图象直接写出mx+n>kx中x的取值范围;
(3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.
【分析】(1)根据△AOC的面积为4和反比例函数图象的位置,可以确定k的值,进而确定反比例函数的关系式,代入可求出点A、B的坐标,求出a、b的值;
(2)根据图象直接写出mx+n>kx的解集;
(3)求出点A(﹣2,4)关于y轴的对称点A′(2,4),根据题意直线A′B与y轴的交点即为所求的点P,求出直线A′B的关系式,进而求出与y轴的交点坐标即可.
【解析】(1)∵△AOC的面积为4,
∴12|k|=4,
解得,k=﹣8,或k=8(不符合题意舍去),
∴反比例函数的关系式为y=-8x,
把点A(﹣2,a)和点B(b,﹣1)代入y=-8x得,
a=4,b=8;
答:a=4,b=8;
(2)根据一次函数与反比例函数的图象可知,不等式mx+n>kx的解集为x<﹣2或0<x<8;
(3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),
又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,
设直线A′B的关系式为y=cx+d,
则有2c+d=48c+d=-1,
解得,c=-56d=173,
∴直线A′B的关系式为y=-56x+173,
∴直线y=-56x+173与y轴的交点坐标为(0,173),
即点P的坐标为(0,173).
18.(2020•青海)如图1(注:与图2完全相同)所示,抛物线y=-12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.
(1)求抛物线的解析式.
(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)
(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)
【分析】(1)用待定系数法解答便可;
(2)求出抛物线与坐标轴的交点A、D坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;
(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.
【解析】(1)把B(3,0)和D(﹣2,-52)代入抛物线的解析式得,
-92+3b+c=0-2-2b+c=-52,
解得,b=1c=32,
∴抛物线的解析式为:y=-12x2+x+32;
(2)令x=0,得y=-12x2+x+32=32,
∴C(0,32),
令y=0,得y=-12x2+x+32=0,
解得,x=﹣1,或x=3,
∴A(﹣1,0),
∵y=-12x2+x+32=-12(x-1)2+2,
∴M(1,2),
∴S四边形ABMC=S△AOC+S△COM+S△MOM
=12OA⋅OC+12OC⋅xM+12OB⋅yM
=12×1×32+12×32×1+12×3×2=92;
(3)设Q(0,n),
①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,
a).Q点在P点左边时,则Q(﹣4,n),
把Q(﹣4,n)代入y=-12x2+x+32,得
n=-212,
∴P(﹣4,-212);
②Q点在P点右边时,则Q(4,n),
把Q(4,n)代入y=-12x2+x+32,得
n=-52,
∴P(4,-52);
③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,
则E(1,0),
∵PE=QE,
∴P(2,﹣n),
把P(2,﹣n)代入y=-12x2+x+32,得
﹣n=32,
∴n=-32,
∴P(2,32).
综上,满足条件的P点坐标为:(﹣4,-212)或(4,-52)或(2,32).
19.(2020•山西)综合与探究
如图,抛物线y=14x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).
(1)请直接写出A,B两点的坐标及直线l的函数表达式;
(2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;
(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.
【分析】(1)令y=0,便可由抛物线的解析式求得A、B点坐标,用待定系数法求得直线AD的解析式;
(2)设P(m,14m2﹣m﹣3),用m表示N点坐标,分两种情况:PM=3MN;PM=3PN.分别列出m的方程进行解答便可;
(3)分两种情况,Q点在y轴正半轴上时;Q点在y轴负半轴上时.分别解决问题.
【解析】(1)令y=0,得y=14x2﹣x﹣3=0,
解得,x=﹣2,或x=6,
∴A(﹣2,0),B(6,0),
设直线l的解析式为y=kx+b(k≠0),则
-2k+b=04k+b=-3,
解得,k=-12b=-1,
∴直线l的解析式为y=-12x-1;
(2)如图1,根据题意可知,点P与点N的坐标分别为
P(m,14m2﹣m﹣3),N(m,-12m﹣1),
∴PM=-14m2+m+3,MN=12m+1,NP=-14m2+12m+2,
分两种情况:
①当PM=3MN时,得-14m2+m+3=3(12m+1),
解得,m=0,或m=﹣2(舍),
∴P(0,﹣3);
②当PM=3NP时,得-14m2+m+3=3(-14m2+12m+2),
解得,m=3,或m=﹣2(舍),
∴P(3,-154);
∴当点N是线段PM的三等分点时,点P的坐标为(3,-154)或(0,﹣3);
(3)∵直线ly=-12x-1与y轴于点E,
∴点E的坐标为(0,﹣1),
分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,
过Q1作Q1H⊥AD于点H,则∠QE=∠AOE=90°,
∵∠Q1EH=∠AEO,
∴△Q1EH∽△AEO,
∴Q1HAO=EHEO,即Q1H2=EH1
∴Q1H=2HE,
∵∠Q1DH=45°,∠Q1HD=90°,
∴Q1H=DH,
∴DH=2EH,
∴HE=ED,
连接CD,
∵C(0,﹣3),D(4,﹣3),
∴CD⊥y轴,
∴ED=CE2+CD2=22+42=25,
∴HE=ED=25,Q1H=2EH=45,
∴Q1E=Q1H2+EH2=10,
∴Q1O=Q1E﹣OE=9,
∴Q1(0,9);
②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,
∵∠Q2EG=∠AEO,
∴△Q2GE∽△AOE,
∴Q2GAO=EGOE,即Q2G2=EG1,
∴Q2G=2EG,
∵∠Q2DG=45°,∠Q2GD=90°,
∴∠DQ2G=∠Q2DG=45°,
∴DG=Q2G=2EG,
∴ED=EG+DG=3EG,
由①可知,ED=25,
∴3EG=25,
∴EG=253,
∴Q2G=453,
∴EQ2=EG2+Q2G2=103,
∴OQ2=OE+EQ2=133,
∴Q2(0,-133),
综上,点Q的坐标为(0.9)或(0,-133).
20.(2020•通辽)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.
(1)求抛物线的函数解析式;
(2)当△MDB的面积最大时,求点P的坐标;
(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.
【分析】(1)由一次函数图象与坐标轴交点B、D的坐标,再由对称求得C点坐标,再用待定系数法求抛物线的解析式;
(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),由三角形的面积公式求得△MDB的面积关于m的二次函数,最后根据二次函数的最大值的求法,求得m的值,进而得P点的坐标;
(3)分三种情况:M为直角顶点;N为直角顶点;Q为直角顶点.分别得出Q点的坐标.
【解析】(1)令y=0,得y=x﹣6=0,
解得x=6,
∴B(6,0),
令x=0,得y=x﹣6=﹣6,
∴D(0,﹣6),
∵点C与点D关于x轴对称,
∴C(0,6),
把B、C点坐标代入y=﹣x2+bx+c中,得
-36+6b+c=0c=6,
解得,b=5c=6,
∴抛物线的解析式为:y=﹣x2+5x+6;
(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),
则MN=﹣m2+4m+12,
∴△MDB的面积=12MN⋅OB=-3m2+12m+36═﹣3(m﹣2)2+48,
∴当m=2时,△MDB的面积最大,
此时,P点的坐标为(2,0);
(3)由(2)知,M(2,12),N(2,﹣4),
当∠QMN=90°时,QM∥x轴,则Q(0,12);
当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);
当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,
即4+(12﹣n)2+4+(n+4)2=(12+4)2,
解得,n=4±55,
∴Q(0,4+55)或(0,4-55).
综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+55)或(0,4-55).
21.(2020•衢州)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=-83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
【分析】(1)根据描点法画图即可;
(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;
(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.
【解析】(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.
(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,
则∠FGK=∠DHK=90°,
记FD交y轴于点K,
∵D点与F点关于y轴上的K点成中心对称,
∴KF=KD,
∵∠FKG=∠DKH,
∴Rt△FGK≌Rt△DHK(AAS),
∴FG=DH,
∵直线AC的解析式为y=-83x+4,
∴x=0时,y=4,
∴A(0,4),
又∵B(﹣2,0),
设直线AB的解析式为y=kx+b,
∴-2k+b=0b=4,
解得k=2b=4,
∴直线AB的解析式为y=2x+4,
过点F作FR⊥x轴于点R,
∵D点的橫坐标为m,
∴F(﹣m,﹣2m+4),
∴ER=2m,FR=﹣2m+4,
∵EF2=FR2+ER2,
∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
令-8x3+4=0,得x=32,
∴0≤m≤32.
∴当m=1时,l的最小值为8,
∴EF的最小值为22.
(3)①∠FBE为定角,不可能为直角.
②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.
③如图3,∠BFE=90°时,有BF2+EF2=BE2.
由(2)得EF2=8m2﹣16m+16,
又∵BR=﹣m+2,FR=﹣2m+4,
∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
又∵BE2=(m+2)2,
∴(5m2﹣20m+20)+(8m2﹣16m+16)=(m+2)2,
化简得,3m2﹣10m+8=0,
解得m1=43,m2=2(不合题意,舍去),
∴m=43.
综合以上可得,当△BEF为直角三角形时,m=0或m=43.
22.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.
(1)若点E为线段OC的中点,求k的值;
(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.
①求证:△OAE≌△BOF;
②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.
【分析】(1)由点E为线段OC的中点,可得E点坐标为(0,52),进而可知A点坐标为:A(1,52),代入解析式即可求出k;
(2)①由△OAB为等腰直角三角形,可得AO=OB,再根据同角的余角相等可证∠AOE=∠FBO,由AAS即可证明△OAE≌△BOF;
②由“ZJ距离”的定义可知d(M,N)为MN两点的水平离与垂直距离之和,故d(A,C)+d(A,B)=BF+CF,即只需求出B点坐标即可,设点A(1,m),由△OAE≌△BOF可得B(m,﹣1),进而代入直线AB解析式求出k值即可解答.
【解析】(1)∵点E为线段OC的中点,OC=5,
∴OE=12OC=52,即:E点坐标为(0,52),
又∵AE⊥y轴,AE=1,
∴A(1,52),
∴k=1×52=52.
(2)①在△OAB为等腰直角三角形中,AO=OB,∠AOB=90°,
∴∠AOE+∠FOB=90°,
又∵BF⊥y轴,
∴∠FBO+∠FOB=90°,
∴∠AOE=∠FBO,
在△OAE和△BOF中,
∠AEO=∠OFB=90°∠AOE=∠FBOAO=BO,
∴△OAE≌△BOF(AAS),
②解:设点A坐标为(1,m),
∵△OAE≌△BOF,
∴BF=OE=m,OF=AE=1,
∴B(m,﹣1),
设直线AB解析式为:lAB:y=kx+5,将AB两点代入得:
则k+5=mkm+5=-1.
解得k1=-3m1=2,k2=-2m2=3.
当m=2时,OE=2,OA=5,S△AOB=52<3,符合;
∴d(A,C)+d(A,B)=AE+CE+(BF﹣AE)+(OE+OF)=1+CE+OE﹣1+OE+1=1+CE+2OE=1+CO+OE=1+5+2=8,
当m=3时,OE=3,OA=10,S△AOB=5>3,不符,舍去;
综上所述:d(A,C)+d(A,B)=8.
23.(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
(1)填空:k= 2 ;
(2)求△BDF的面积;
(3)求证:四边形BDFG为平行四边形.
【分析】(1)设点B(s,t),st=8,则点M(12s,12t),则k=12s•12t=14st=2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;
(3)确定直线DE的表达式为:y=-12m2x+52m,令y=0,则x=5m,故点F(5m,0),即可求解.
【解析】(1)设点B(s,t),st=8,则点M(12s,12t),
则k=12s•12t=14st=2,
故答案为2;
(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=12×8-12×2=3;
(3)设点D(m,2m),则点B(4m,2m),
∵点G与点O关于点C对称,故点G(8m,0),
则点E(4m,12m),
设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得2m=ms+n12m=4ms+n,解得k=-12m2b=52m,
故直线DE的表达式为:y=-12m2x+52m,令y=0,则x=5m,故点F(5m,0),
故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,
则FG∥BD,故四边形BDFG为平行四边形.
24.(2019•沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.
(1)k的值是 -12 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为334,请直接写出点C的坐标.
【分析】(1)根据点A的坐标,利用待定系数法可求出k值;
(2)①利用一次函数图象上点的坐标特征可得出点B的坐标,由平行四边形的性质结合点E为OB的中点可得出CE是△ABO的中位线,结合点A的坐标可得出CE的长,在Rt△DOE中,利用勾股定理可求出DE的长,再利用平行四边形的周长公式即可求出▱OCED的周长;
②设点C的坐标为(x,-12x+4),则CE=|x|,CD=|-12x+4|,利用三角形的面积公式结合△CDE的面积为334可得出关于x的方程,解之即可得出结论.
【解析】(1)将A(8,0)代入y=kx+4,得:0=8k+4,
解得:k=-12.
故答案为:-12.
(2)①由(1)可知直线AB的解析式为y=-12x+4.
当x=0时,y=-12x+4=4,
∴点B的坐标为(0,4),
∴OB=4.
∵点E为OB的中点,
∴BE=OE=12OB=2.
∵点A的坐标为(8,0),
∴OA=8.
∵四边形OCED是平行四边形,
∴CE∥DA,
∴BCAC=BEOE=1,
∴BC=AC,
∴CE是△ABO的中位线,
∴CE=12OA=4.
∵四边形OCED是平行四边形,
∴OD=CE=4,OC=DE.
在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
∴DE=OD2+OE2=25,
∴C平行四边形OCED=2(OD+DE)=2(4+25)=8+45.
②设点C的坐标为(x,-12x+4),则CE=|x|,CD=|-12x+4|,
∴S△CDE=12CD•CE=|-14x2+2x|=334,
∴x2﹣8x+33=0或x2﹣8x﹣33=0.
方程x2﹣8x+33=0无解;
解方程x2﹣8x﹣33=0,得:x1=﹣3,x2=11,
∴点C的坐标为(﹣3,112)或(11,-32).
25.(2020•绥化)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=kx(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).
(1)求反比例函数y1=kx(x>0)的解析式和直线DE的解析式;
(2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;
(3)在(2)的条件下,△PDE的周长最小值是 5+13 .
【分析】(1)根据线段中点的定义和矩形的性质得到D(1,4),解方程和方程组即可得到结论;
(2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,此时,△PDE的周长最小,求得直线D′E的解析式为y=-23x+103,于是得到结论;
(3)根据勾股定理即可得到结论.
【解析】(1)∵点D是边AB的中点,AB=2,
∴AD=1,
∵四边形OABC是矩形,BC=4,
∴D(1,4),
∵反比例函数y1=kx(x>0)的图象经过点D,
∴k=4,
∴反比例函数的解析式为y=4x(x>0),
当x=2时,y=2,
∴E(2,2),
把D(1,4)和E(2,2)代入y2=mx+n(m≠0)得,2m+n=2m+n=4,
∴m=-2n=6,
∴直线DE的解析式为y=﹣2x+6;
(2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,
此时,△PDE的周长最小,
∵D点的坐标为(1,4),
∴D′的坐标为(﹣1,4),
设直线D′E的解析式为y=ax+b,
∴4=-a+b2=2a+b,
解得:a=-23b=103,
∴直线D′E的解析式为y=-23x+103,
令x=0,得y=103,
∴点P的坐标为(0,103);
(3)∵D(1,4),E(2,2),
∴BE=2,BD=1,
∴DE=12+22=5,
由(2)知,D′的坐标为(﹣1,4),
∴BD′=3,
∴D′E=22+32=13,
∴△PDE的周长最小值=DE+D′E=5+13,
故答案为:5+13.
26.(2019•大连)如图,在平面直角坐标系xOy中,直线y=-34x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=53OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:
(1)线段AB的长;
(2)S关于m的函数解析式,并直接写出自变量m的取值范围.
【分析】(1)由直线y=-34x+3与令x=0,或y=0,分别求出对应的y、x的值,从而确定A、B两点的坐标;
(2)分两种情况进行分别探究,一种是点C在y轴的正半轴,即①当32<m≤3时,②当0<m≤32时,另一种是点C在y轴的负半轴,即,③当﹣3<m≤0时,④当m<﹣3时,分别画出相应的图象,根据三角形相似,求出相应的边的长用含有m的代数式表示,再表示面积,从而确定在不同情况下S与m的函数解析式.
【解析】(1)当x=0时,y=3,
当y=0时,x=4,
∴直线y=-34x+3与x轴点交A(4,0),与y轴交点B(0,3)
∴OA=4,OB=3,
∴AB=32+42=5,
因此:线段AB的长为5.
(2)当CD∥OA时,如图,
∵BD=53OC,OC=m,
∴BD=53m,
由△BCD∽△BOA得:
BDBA=BCBO,即:53m5=3-m3,解得:m=32;
①当32<m≤3时,如图1所示:过点D作DF⊥OB,垂足为F,
此时在x轴下方的三角形与△CDF全等,
∵△BDF∽△BAO,
∴BDDF=BAOA=54,
∴DF=43m,同理:BF=m,
∴CF=2m﹣3,
∴S△CDF=12DF⋅CF=12(2m﹣3)×43m=43m2﹣2m,
即:S=43m2﹣2m,(32<m≤3)
②当0<m≤32时,如图2所示:DE=m≤32,此时点E在△AOB的内部,
S=0 (0<m≤32);
③当﹣3<m≤0时,如图3所示:同理可得:点D(-43m,m+3)
设直线CD关系式为y=kx+b,把C(0,m)、D(-43m,m+3)代入得:
b=m-43mk+b=m+3,解得:k=-94m,b=m,
直线CD关系式为y=-94mx+m,
当y=0时,0=-94mx+m,解得x=49m2
F(49m2,0)
∴S△COF=12OC•OF=12(﹣m)×49m2=-29m3,
即:S=-29m3,(﹣3<m≤0)
④当m<﹣3时,如图4所示:同理可得:点D(-43m,m+3)
此时,DF=﹣m﹣3,OC=﹣m,OF=-43m,
∴S梯形OCDF=12(﹣m﹣3﹣m)×(-43m)=43m2+2m
即:S=43m2+2m (m<﹣3)
综上所述:S与m的函数关系式为:S=43m2-2m(32<m≤3)0(0<m≤32)-29m3(-3<m≤0)43m2+2m(m≤-3).
27.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
(1)填空:b= ﹣4 ;
(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.
【分析】(1)将点C坐标代入解析式可求解;
(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE=AEEC=13,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;
当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q坐标,求出CQ解析式,联立方程组,可求点P坐标;
(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB=∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=95,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.
【解析】(1)∵抛物线y=x2+bx+3的图象过点C(1,0),
∴0=1+b+3,
∴b=﹣4,
故答案为:﹣4;
(2)∵b=4,
∴抛物线解析式为y=x2﹣4x+3
∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,
∴点A(0,3),3=x2﹣4x,
∴x1=0(舍去),x2=4,
∴点B(4,3),
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴顶点D坐标(2,﹣1),
如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,
∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,
∴点E(1,3),CE=BE=3,AE=1,
∴∠EBC=∠ECB=45°,tan∠ACE=AEEC=13,
∴∠BCF=45°,
∵点B(4,3),点C(1,0),点D(2,﹣1),
∴BC=9+9=32,CD=1+1=2,BD=(4-2)2+(3+1)2=25,
∵BC2+CD2=20=BD2,
∴∠BCD=90°,
∴tan∠DBC=CDBC=232=13=tan∠ACE,
∴∠ACE=∠DBC,
∴∠ACE+∠ECB=∠DBC+∠BCF,
∴∠ACB=∠CFD,
又∵∠CQD=∠ACB,
∴点F与点Q重合,
∴点P是直线CF与抛物线的交点,
∴0=x2﹣4x+3,
∴x1=1,x2=3,
∴点P(3,0);
当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,
∵CH⊥DB,HF=QH,
∴CF=CQ,
∴∠CFD=∠CQD,
∴∠CQD=∠ACB,
∵CH⊥BD,
∵点B(4,3),点D(2,﹣1),
∴直线BD解析式为:y=2x﹣5,
∴点F(52,0),
∴直线CH解析式为:y=-12x+12,
∴y=-12x+12y=2x-5,
解得x=115y=-35,
∴点H坐标为(115,-35),
∵FH=QH,
∴点Q(1910,-65),
∴直线CQ解析式为:y=-43x+43,
联立方程组y=-43x+43y=x2-4x+3,
解得:x1=1y1=0或x2=53y2=-89,
∴点P(53,-89);
综上所述:点P的坐标为(3,0)或(53,-89);
(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,
∵点A(0,3),点C(1,0),
∴直线AC解析式为:y=﹣3x+3,
∴y=-3x+3y=2x-5,
∴x=85y=-95,
∴点N坐标为(85,-95),
∵点H坐标为(115,-35),
∴CH2=(115-1)2+(35)2=95,HN2=(115-85)2+(-35+95)2=95,
∴CH=HN,
∴∠CNH=45°,
∵点E关于直线BD对称的点为F,
∴EN=NF,∠ENB=∠FNB=45°,
∴∠ENF=90°,
∴∠ENM+∠FNM=90°,
又∵∠ENM+∠MEN=90°,
∴∠MEN=∠FNM,
∴△EMN≌△NKF(AAS)
∴EM=NK=95,MN=KF,
∴点E的横坐标为-15,
∴点E(-15,185),
∴MN=275=KF,
∴CF=85+275-1=6,
∵点F关于直线BC对称的点为G,
∴FC=CG=6,∠BCF=∠GCB=45°,
∴∠GCF=90°,
∴点G(1,6),
∴AG=12+(6-3)2=10.
28.(2020•营口)在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.
(1)求抛物线的解析式;
(2)点P为直线CD上的一个动点,连接BC;
①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.
【分析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解;
(2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;
②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解.
【解析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),
解得:a=1,
故抛物线的表达式为:y=x2+2x﹣3①;
(2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),
由点C、D的坐标知,直线CD的表达式为:y=x﹣3;
tan∠BCO=13,则cos∠BCO=210;
①当点P(P′)在点C的右侧时,
∵∠PAB=∠BCO,
故P′B∥y轴,则点P′(1,﹣2);
当点P在点C的左侧时,
设直线PB交y轴于点H,过点H作HN⊥BC于点N,
∵∠PAB=∠BCO,
∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×210=32+12,
解得:CH=53,则OH=3﹣CH=43,故点H(0,-43),
由点B、H的坐标得,直线BH的表达式为:y=43x-43②,
联立①②并解得:x=-5y=-8,
故点P的坐标为(1,﹣2)或(﹣5,﹣8);
②∵∠PAB=∠BCO,而tan∠BCO=13,
故设直线AP的表达式为:y=13x+s,将点A的坐标代入上式并解得:s=1,
故直线AP的表达式为:y=13x+1,
联立①③并解得:x=43y=139,故点N(43,139);
设△AMN的外接圆为圆R,
当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),
∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,
∴∠RMH=∠GAR,
∵AR=MR,∠AGR=∠RHM=90°,
∴△AGR≌△RHM(AAS),
∴AG=m+3=RH,RG=﹣n=MH,
∴点M(m+n,n﹣m﹣3),
将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③,
由题意得:AR=NR,即(m+3)2=(m-43)2+(139)2④,
联立③④并解得:m=-29n=-109,
故点M(-43,-359).
29.(2020•哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=34x,过点C作CM⊥y轴,垂足为M,OM=9.
(1)如图1,求直线AB的解析式;
(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求PEOD的值;
(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=2AF,求点P的坐标.
【分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.
(2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.
(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=2m,QR=SF=12﹣m,GQ﹣FG=2AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得DEDH=DHPD,由(2)可知DE=3a,PD=12a,推出3aDH=DH12a,可得DH=6a,推出tan∠PHD=PDDH=12a6a=2,由∠PHD=∠FHT,可得tan∠FHT=TFHT=2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.
【解析】(1)∵CM⊥y轴,OM=9,
∴y=9时,9=34x,解得x=12,
∴C(12,9),
∵AC⊥x轴,
∴A(12,0),
∵OA=OB,
∴B(0,﹣12),
设直线AB的解析式为y=kx+b,则有b=-1212k+b=0,
解得k=1b=-12,
∴直线AB的解析式为y=x﹣12.
(2)如图2中,
∵∠CMO=∠MOA=∠OAC=90°,
∴四边形OACM是矩形,
∴AO=CM=12,
∵NC=OM=9,
∴MN=CM﹣NC=12﹣9=3,
∴N(3,9),
∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),
∴OD=4a,
把x=4a,代入y=34x中,得到y=3a,
∴E(4a,3a),
∴DE=3a,
把x=4a代入,y=3x中,得到y=12a,
∴P(4a,12a),
∴PD=12a,
∴PE=PD﹣DE=12a﹣3a=9a,
∴PEOD=94.
(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.
∵GF∥x轴,
∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,
∴∠OFR=∠R=∠AOS=∠BSG=90°,
∴四边形OSRA是矩形,
∴OS=AR,
AR=OA=12,
∵OA=OB,
∴∠OBA=∠OAB=45°,
∴∠FAR=90°﹣45°=45°,
∴∠FAR=∠AFR,
∴FR=AR=OS,
∵OF⊥FQ,
∴∠OSR=∠R=∠OFQ=90°,
∴∠OFS+∠QFR=90°,
∵∠QFR+∠FQR=90°,
∴∠OFS=∠FQR,
∴△OFS≌△FQR(AAS),
∴SF=QR,
∵∠SFB=∠AFR=45°,
∴∠SBF=∠SFB=45°,
∴SF=SB=QR,
∵∠SGB=∠QGR,∠BSG=∠R,
∴△BSG≌△QRG(AAS),
∴SG=GR=6,
设FR=m,则AR=m,AF=2m,QR=SF=12﹣m,
∵GQ﹣FG=2AF,
∴GQ=2×2m+6﹣m=m+6,
∵GQ2=GR2+QR2,
∴(m+6)2=62+(12﹣m)2,
解得m=4,
∴FS=8,AR=4,
∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,
∴FT=FR=AR=4,∠OTF=90°,
∴四边形OSFT是矩形,
∴OT=SF=8,
∵∠DHE=∠DPH,
∴tan∠DHE=tan∠DPH,
∴DEDH=DHPD,
由(2)可知DE=3a,PD=12a,
∴3aDH=DH12a,
∴DH=6a,
∴tan∠PHD=PDDH=12a6a=2,
∵∠PHD=∠FHT,
∴tan∠FHT=TFHT=2,
∴HT=2,
∵OT=OD+DH+HT,
∴4a+6a+2=8,
∴a=35,
∴OD=125,PD=12×35=365,
∴P(125,365).
30.(2020•金华)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.
(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.
【分析】(1)根据邻边相等的四边形是菱形证明即可.
(2)连接DE,求出△ADE的面积即可解决问题.
(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.
【解答】(1)证明:如图1中,
∵AE∥DF,AD∥EF,
∴四边形AEFD是平行四边形,
∵四边形ABOC是正方形,
∴AC=AB=OC=OB,∠ACE=∠ABD=90°,
∵E,D分别是OC,OB的中点,
∴CE=BD,
∴△CAE≌△ABD(SAS),
∴AE=AD,
∴四边形AEFD是菱形.
(2)解:如图1中,连接DE.
∵S△ADB=S△ACE=12×8×4=16,
S△EOD=12×4×4=8,
∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,
∴S菱形AEFD=2S△AED=48.
(3)解:如图1中,连接AF,设AF交DE于K,
∵OE=OD=4,OK⊥DE,
∴KE=KD,
∴OK=KE=KD=22,
∵AO=82,
∴AK=62,
∴AK=3DK,
①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:
如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.
∵菱形PAQG∽菱形ADFE,
∴PH=3AH,
∵HN∥OQ,QH=HP,
∴ON=NP,
∴HN是△PQO的中位线,
∴ON=PN=8﹣t,
∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,
∴△HMA∽△PNH,
∴AMNH=MHPN=AHPH=13,
∴HN=3AM=3t,
∴MH=MN﹣NH=8﹣3t,
∵PN=3MH,
∴8﹣t=3(8﹣3t),
∴t=2,
∴OP=2ON=2(8﹣t)=12,
∴P(12,0).
如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.
同法可证:△AMH∽△HNP,
∴AMHN=MHPN=AHHP=13,设MH=t,
∴PN=3MH=3t,
∴AM=BM﹣AB=3t﹣8,
∵HI是△OPQ的中位线,
∴OP=2IH,
∴HI=HN,
∴8+t=9t﹣24,
∴t=4,
∴OP=2HI=2(8+t)=24,
∴P(24,0).
②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:
如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.
∵MH是△QAC的中位线,
∴MH=12AC=4,
同法可得:△HPN∽△QHM,
∴NPHM=HNMQ=PHQH=13,
∴PN=13HM=43,
∴OM=PN=43,设HN=t,则MQ=3t,
∵MQ=MC,
∴3t=8-43,
∴t=209,
∴OP=MN=4+t=569,
∴点P的坐标为(569,0).
如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.
∵IH是△ACQ的中位线,
∴CQ=2HI,NQ=CI=4,
同法可得:△PMH∽△HNQ,
∴MHNQ=PMHN=PHHQ=13,则MH=13NQ=43,
设PM=t,则HN=3t,
∵HN=HI,
∴3t=8+43,
∴t=289,
∴OP=OM﹣PM=QN﹣PM=4﹣t=89,
∴P(89,0).
③如图6中,当AP为菱形的对角线时,有图6一种情形:
过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.
∵HI∥x轴,AH=HP,
∴AI=IB=4,
∴PN=IB=4,
同法可得:△PNH∽△HMQ,
∴PNHM=HNMQ=PHHQ=13,
∴MH=3PN=12,HI=MH﹣MI=4,
∵HI是△ABP的中位线,
∴BP=2IH=8,
∴OP=OB+BP=16,
∴P(16,0),
综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).
专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用),文件包含函数与几何综合问题共25题解析版pdf、函数与几何综合问题共25题学生版pdf等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
专题32 函数与几何综合问题(共10道)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题32 函数与几何综合问题(共10道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题32函数与几何综合问题共10道原卷版docx、专题32函数与几何综合问题共10道解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题20 图形的旋转(共30题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题20 图形的旋转(共30题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题20图形的旋转共30题原卷版docx、专题20图形的旋转共30题解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。